首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   13篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   14篇
  2017年   16篇
  2016年   12篇
  2015年   21篇
  2014年   26篇
  2013年   26篇
  2012年   22篇
  2011年   34篇
  2010年   15篇
  2009年   16篇
  2008年   10篇
  2007年   21篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1981年   1篇
  1969年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
61.
62.
Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.  相似文献   
63.
Nanomedicine refers to biomedical and pharmaceutical applications of nanosized cargos of drugs/vaccine/DNA therapeutics including nanoparticles, nanoclusters, and nanospheres. Such particles have unique characteristics related to their size, surface, drug loading, and targeting potential. They are widely used to combat disease by controlled delivery of bioactive(s) or for diagnosis of life-threatening problems in their very early stage. The bioactive agent can be combined with a diagnostic agent in a nanodevice for theragnostic applications. However, the formulation scientist faces numerous challenges related to their development, scale-up feasibilities, regulatory aspects, and commercialization. This article reviews recent progress in the method of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization.KEY WORDS: lipid nanoparticles, nanomedicine, polymeric nanoparticles, scale-up production  相似文献   
64.
The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes.  相似文献   
65.
Bayesian-based selection of metabolic objective functions   总被引:1,自引:0,他引:1  
MOTIVATION: A critical component of in silico analysis of underdetermined metabolic systems is the identification of the appropriate objective function. A common assumption is that the objective of the cell is to maximize growth. This objective function has been shown to be consistent in a few limited experimental cases, but may not be universally appropriate. Here a method is presented to quantitatively determine the most probable objective function. RESULTS: The genome-scale metabolism of Escherichia coli growing on succinate was used as a case-study for analysis. Five different objective functions, including maximization of growth rate, were chosen based on biological plausibility. A combination of flux balance analysis and linear programming was used to simulate cellular metabolism, which was then compared to independent experimental data using a Bayesian objective function discrimination technique. After comparing rates of oxygen uptake and acetate production, minimization of the production rate of redox potential was determined to be the most probable objective function. Given the appropriate reaction network and experimental data, the discrimination technique can be applied to any bacterium to test a variety of different possible objective functions. SUPPLEMENTARY INFORMATION: Additional files, code and a program for carrying out model discrimination are available at http://www.engr.uconn.edu/~srivasta/modisc.html.  相似文献   
66.
67.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   
68.
Bacterial persisters (defined as dormant, non-dividing cells with globally reduced metabolism) are the major cause of recurrent infections. As they neither grow nor die in presence of antibiotics, it is difficult to eradicate these cells using antibiotics, even at higher concentrations. Reports of metabolites (which help in waking up of these inactive cells) enabled eradication of bacterial persistence by aminoglycosides, suggest the new potential strategy to improve antibiotic therapy. Here we propose, mannitol enabled elimination of Salmonella persister cells by the nisin–antibiotic combination. For this, persister cells were developed and characterized for their typical properties such as non-replicative state and metabolic dormancy. Different carbon sources viz. glucose, glycerol, and mannitol were used, each as an adjunct to ampicillin for the eradication of persister cells. The maximum (but not complete) killing was observed with mannitol–ampicillin, out of all the combinations used. However, significant elimination (about 78%) could be observed, when nisin (an antimicrobial peptide) was used with ampicillin in presence of mannitol, which might have mediated the transfer of antibiotic–nisin combination at the same time when the cells tried to grab the carbon molecule. Further, the effectiveness of the trio was confirmed by flow cytometry. Overall, our findings highlight the potential of this trio-combination for developing it as an option for tackling Salmonella persister cells.  相似文献   
69.
Jackfruit, the largest known edible fruit bearing tree, is one of the important fruit crops of India. It exhibits wide range of diversity with respect to fruit character and bulb quality. It is an important component of homestead garden because of its multifarious uses (dessert, vegetable and pickle) and high nutritive value. In spite of high food value and market potential, jackfruit is one of the poorly researched crops and there is a dearth of information about its phenology. The present study defines phenological stages of jackfruit according to the extended BBCH (Biologische Bundesantalt, Bundessortenamt und Chemische Industrie) scale using three‐digit numerical system. Eight principal growth stages, namely bud development (stage 0), shoot development (stage 1), leaf development (stage 3), specialised reproductive shoot development (stage 4), reproductive development (stage 5), flowering (stage 6), fruit development (stage 7) and fruit maturation (stage 8) have been described. A total of 42 secondary growth stages have been described and defined. In this study, bearing and non‐bearing footstalks as well as male and female phases have been defined separately. The study will act as an effective tool for providing a consensual unified approach for standardisation of phenophases, as well as for efficient orchard management for ensuring higher yield and fruit quality. The scale may also be effectively used for characterisation and adaptation of germplasm and assessment of climatic impact on crop phenology.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号