首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   13篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   14篇
  2017年   16篇
  2016年   12篇
  2015年   21篇
  2014年   26篇
  2013年   26篇
  2012年   22篇
  2011年   34篇
  2010年   15篇
  2009年   16篇
  2008年   10篇
  2007年   21篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1981年   1篇
  1969年   1篇
排序方式: 共有343条查询结果,搜索用时 15 毫秒
231.
Salmonids are of particular interest to evolutionary biologists due to their incredible diversity of life‐history strategies and the speed at which many salmonid species have diversified. In Switzerland alone, over 30 species of Alpine whitefish from the subfamily Coregoninae have evolved since the last glacial maximum, with species exhibiting a diverse range of morphological and behavioural phenotypes. This, combined with the whole genome duplication which occurred in the ancestor of all salmonids, makes the Alpine whitefish radiation a particularly interesting system in which to study the genetic basis of adaptation and speciation and the impacts of ploidy changes and subsequent rediploidization on genome evolution. Although well‐curated genome assemblies exist for many species within Salmonidae, genomic resources for the subfamily Coregoninae are lacking. To assemble a whitefish reference genome, we carried out PacBio sequencing from one wild‐caught Coregonus sp. “Balchen” from Lake Thun to ~90× coverage. PacBio reads were assembled independently using three different assemblers, falcon , canu and wtdbg2 and subsequently scaffolded with additional Hi‐C data. All three assemblies were highly contiguous, had strong synteny to a previously published Coregonus linkage map, and when mapping additional short‐read data to each of the assemblies, coverage was fairly even across most chromosome‐scale scaffolds. Here, we present the first de novo genome assembly for the Salmonid subfamily Coregoninae. The final 2.2‐Gb wtdbg2 assembly included 40 scaffolds, an N50 of 51.9 Mb and was 93.3% complete for BUSCOs. The assembly consisted of ~52% transposable elements and contained 44,525 genes.  相似文献   
232.
The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69–10.08% lignin in P. juliflora and 6.89–7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90–3.97 and 4.25–4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0–33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1–25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.  相似文献   
233.
The emergence of antibiotic resistance in bacterial pathogens has foxed the health organizations which are actively scrambling for solutions. The available data indicate an increased morbidity in infections often leading to mortality among patients where drug-resistant pathogens have negated the effect of the medicines. In the context of developing “novel bacterial inhibitors” for killing or arresting the growth of drug-resistant pathogens, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is an enzyme that provides hope for the future. This enzyme catalyzes the first committed step in the biosynthesis of peptidoglycan, an integral and essential component of the bacterial cell wall. MurA enzyme is neither present nor required by mammals and shows poor homology with human proteins. Therefore, it is an ideal target for antibacterial chemotherapy. Till date, 18 structures of MurA (in native and ligand-bound forms) from different bacterial pathogens have been solved. In the last 2 years, eight structures of bacterial MurA have been submitted to the Protein Data Bank and many inhibitors discovered. The present review discusses the structural and functional features of MurA of bacterial pathogens along with the development of MurA-targeted inhibitors.  相似文献   
234.
Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-related malignancy of the thoracic pleura. Although, platinum-based agents are the first line of therapy, there is an urgent need for second-line therapies to treat the drug-resistant MPM. Cell cycle as well as apoptosis pathways are frequently altered in MPM and thus remain attractive targets for intervention strategies. Curcumin, the major component in the spice turmeric, alone or in combination with other chemotherapeutics has been under investigation for a number of cancers. In this study, we investigated the biological and molecular responses of MPM cells to curcumin treatments and the mechanisms involved. Flow-cytometric analyses coupled with western immunoblotting and gene-array analyses were conducted to determine mechanisms of curcumin-dependent growth suppression of human (H2373, H2452, H2461, and H226) and murine (AB12) MPM cells. Curcumin inhibited MPM cell growth in a dose- and time-dependent manner while pretreatment of MPM cells with curcumin enhanced cisplatin efficacy. Curcumin activated the stress-activated p38 kinase, caspases 9 and 3, caused elevated levels of proapoptotic proteins Bax, stimulated PARP cleavage, and apoptosis. In addition, curcumin treatments stimulated expression of novel transducers of cell growth suppression such as CARP-1, XAF1, and SULF1 proteins. Oral administration of curcumin inhibited growth of murine MPM cell-derived tumors in vivo in part by stimulating apoptosis. Thus, curcumin targets cell cycle and promotes apoptosis to suppress MPM growth in vitro and in vivo. Our studies provide a proof-of-principle rationale for further in-depth analysis of MPM growth suppression mechanisms and their future exploitation in effective management of resistant MPM.  相似文献   
235.
236.
Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p<0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.  相似文献   
237.
Chhipa RR  Wu Y  Ip C 《Cellular signalling》2011,23(9):1466-1472
The present study was designed to investigate (i) the role of AMPK activation in inducing autophagy in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia, and (ii) whether autophagy offers a survival advantage under these harsh conditions. Low androgen and low oxygen are two co-existing conditions frequently found in prostate cancer tissue following surgical or medical castration. In LNCaP cells, androgen deprivation and hypoxia together boosted AMPK activation to a higher level than that seen with either condition alone. The augmented AMPK response was associated with improved viability and the induction of autophagy. These observations suggest that a threshold of AMPK activity has to be attained in order to trigger autophagy, since neither androgen deprivation nor hypoxia by itself was capable of pushing AMPK activity past that threshold. Beclin-1 was identified as a potential downstream target of AMPK in turning on the autophagic cascade. If autophagy was blocked by chemical inhibition or RNA interference of key regulators, e.g., AMPK or beclin-1, more cells would die by apoptosis. The occurrence of autophagy is thus a survival mechanism for androgen-dependent prostate cancer cells to escape from an androgen-deprived and hypoxic subsistence.  相似文献   
238.

Introduction

We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers.

Materials and Methods

We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features.

Results

We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival.

Conclusion

We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.  相似文献   
239.
240.
CCR2 is considered a proinflammatory mediator in many inflammatory diseases such as rheumatoid arthritis. However, mice lacking CCR2 develop exacerbated collagen-induced arthritis. To explore the underlying mechanism, we investigated whether autoimmune-associated Th17 cells were involved in the pathogenesis of the severe phenotype of autoimmune arthritis. We found that Th17 cells were expanded approximately 3-fold in the draining lymph nodes of immunized CCR2−/− mice compared to WT controls (p = 0.017), whereas the number of Th1 cells and regulatory T cells are similar between these two groups of mice. Consistently, levels of the Th17 cell cytokine IL-17A and Th17 cell-associated cytokines, IL-6 and IL-1β were approximately 2–6-fold elevated in the serum and 22–28-fold increased in the arthritic joints in CCR2−/− mice compared to WT mice (p = 0.04, 0.0004, and 0.01 for IL-17, IL-6, and IL-1β, respectively, in the serum and p = 0.009, 0.02, and 0.02 in the joints). Furthermore, type II collagen-specific antibodies were significantly increased, which was accompanied by B cell and neutrophil expansion in CCR2−/− mice. Finally, treatment with an anti-IL-17A antibody modestly reduced the disease severity in CCR2−/− mice. Therefore, we conclude that while we detect markedly enhanced Th17-cell responses in collagen-induced arthritis in CCR2-deficient mice and IL-17A blockade does have an ameliorating effect, factors additional to Th17 cells and IL-17A also contribute to the severe autoimmune arthritis seen in CCR2 deficiency. CCR2 may have a protective role in the pathogenesis of autoimmune arthritis. Our data that monocytes were missing from the spleen while remained abundant in the bone marrow and joints of immunized CCR2−/− mice suggest that there is a potential link between CCR2-expressing monocytes and Th17 cells during autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号