首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   19篇
  196篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   12篇
  2011年   9篇
  2010年   4篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   12篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   9篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1984年   2篇
  1976年   1篇
排序方式: 共有196条查询结果,搜索用时 46 毫秒
71.
72.
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on alpha-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and beta-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.  相似文献   
73.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   
74.
Computational modeling has been applied for data analysis in psychology, neuroscience, and psychiatry. One of its important uses is to infer the latent variables underlying behavior by which researchers can evaluate corresponding neural, physiological, or behavioral measures. This feature is especially crucial for computational psychiatry, in which altered computational processes underlying mental disorders are of interest. For instance, several studies employing model-based fMRI—a method for identifying brain regions correlated with latent variables—have shown that patients with mental disorders (e.g., depression) exhibit diminished neural responses to reward prediction errors (RPEs), which are the differences between experienced and predicted rewards. Such model-based analysis has the drawback that the parameter estimates and inference of latent variables are not necessarily correct—rather, they usually contain some errors. A previous study theoretically and empirically showed that the error in model-fitting does not necessarily cause a serious error in model-based fMRI. However, the study did not deal with certain situations relevant to psychiatry, such as group comparisons between patients and healthy controls. We developed a theoretical framework to explore such situations. We demonstrate that the parameter-misspecification can critically affect the results of group comparison. We demonstrate that even if the RPE response in patients is completely intact, a spurious difference to healthy controls is observable. Such a situation occurs when the ground-truth learning rate differs between groups but a common learning rate is used, as per previous studies. Furthermore, even if the parameters are appropriately fitted to individual participants, spurious group differences in RPE responses are observable when the model lacks a component that differs between groups. These results highlight the importance of appropriate model-fitting and the need for caution when interpreting the results of model-based fMRI.  相似文献   
75.
The lignin content of biomass can impact the ease and cost of biomass processing. Lignin reduction through breeding and genetic modification therefore has potential to reduce costs in biomass-processing industries (e.g. pulp and paper, forage, and lignocellulosic ethanol). We investigated compositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of p-coumarate 3-hydroxylase (C3H) or hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT). We investigated whether the difference in reactivity during lignification of 4-coumaryl alcohol (H) monomers versus the naturally dominant sinapyl alcohol and coniferyl alcohol lignin monomers alters the lignin structure. Sequential base extraction readily reduced the H monomer content of the transgenic lines, leaving a residual lignin greatly enriched in H subunits; the extraction profile highlighted the difference between the control and transgenic lines. Gel permeation chromatography of isolated ball-milled lignin indicated significant changes in the weight average molecular weight distribution of the control versus transgenic lines (CTR1a, 6000; C3H4a, 5500; C3H9a, 4000; and HCT30a, 4000).  相似文献   
76.
Abstract

Thermodynamic parameters for duplex formation were determined from CD melting curves for r(GGACGAGUCC)2 and d(GGACGAGTCC)2, both of which form two consecutive ‘sheared’ A:G base pairs at the center [Katahira et al. (1993) Nucleic Acids Res. 21, 5418–5424; Katahira et al., (1994) Nucleic Acids Res. 22, 2752–27591. The parameters were determined also for r(GGACUAGUCC)2 and d(GGACTAGTCC)2, where the A:G mismatches are replaced by Watson-Crick A:U(T) base pairs. Thermodynamic properties for duplex formation are compared between the sheared and the Watson-Crick base pairs, and between RNA and DNA. Difference in the thermodynamic stability is analyzed and discussed in terms of enthalpy and entropy changes. The characteristic features in CD spectra of RNA and DNA containing the sheared A:G base pairs are also reported.

  相似文献   
77.
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.  相似文献   
78.
Senescence phenotypes and mitochondrial dysfunction are implicated in aging and in premature aging diseases, including ataxia telangiectasia (A‐T). Loss of mitochondrial function can drive age‐related decline in the brain, but little is known about whether improving mitochondrial homeostasis alleviates senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence‐associated secretory phenotype (SASP) occur in A‐T patient fibroblasts, and in ATM‐deficient cells and mice. Senescence is mediated by stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide riboside (NR) prevents senescence and SASP by promoting mitophagy in a PINK1‐dependent manner. NR treatment also prevents neurodegeneration, suppresses senescence and neuroinflammation, and improves motor function in Atm−/− mice. Our findings suggest a central role for mitochondrial dysfunction‐induced senescence in A‐T pathogenesis, and that enhancing mitophagy as a potential therapeutic intervention.  相似文献   
79.
An RNA aptamer containing two binding sites exhibits extremely high affinity to the HIV Tat protein. We have determined the structure of the aptamer complexed with two argininamide molecules. Two adjacent U:A:U base triples were formed, which widens the major groove to make space for the two argininamide molecules. The argininamide molecules bind to the G bases through hydrogen bonds. The binding is stabilized through stacking interactions. The structure of the aptamer complexed with a Tat-derived arginine-rich peptide was also characterized. It was suggested that the aptamer structure is similar for both complexes and that the aptamer interacts with two different arginine residues of the peptide simultaneously at the two binding sites, which could explain the high affinity to Tat.  相似文献   
80.
In anti-sense and RNA interference transgenic plants of Coffea canephora in which the expression of CaMXMT1 was suppressed, caffeine biosynthesis from [8-(14)C]adenine was investigated, together with the overall metabolism of [8-(14)C]adenine. Compared with wild type control plants, total purine alkaloid biosynthesis from adenine and conversion of theobromine to caffeine were both reduced in the transgenic plants. As found previously, [8-(14)C]adenine was metabolised to salvage products (nucleotides and RNA), to degradation products (ureides and CO(2)) and to purine alkaloids (theobromine and caffeine). In the transgenic plants, metabolism of [8-(14)C]adenine shifted from purine alkaloid synthesis to purine catabolism or salvage for nucleotides. HPLC analysis revealed a significantly reduced caffeine content in the transgenic plants. A small quantity (less than 20 nmol g(-1) fresh weight) of xanthosine had accumulated in at least one of the transgenic plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号