首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   42篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   16篇
  2016年   11篇
  2015年   15篇
  2014年   18篇
  2013年   20篇
  2012年   17篇
  2011年   22篇
  2010年   22篇
  2009年   5篇
  2008年   27篇
  2007年   17篇
  2006年   19篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1973年   4篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1965年   2篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
31.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   
32.
It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult α1 and embryonic α2 subunits, can be modified through selective mutations that rescued or impaired Gβγ modulation. Even though both isoforms were able to physically interact with Gβγ, only the α1 GlyR was functionally modulated by Gβγ and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in α2 GlyRs was enough to generate GlyRs modulated by Gβγ and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gβγ modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs.  相似文献   
33.
We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.  相似文献   
34.
Understanding the genetic basis of ecologically important traits is a major focus of evolutionary research. Recent advances in molecular genetic techniques should significantly increase our understanding of how regulatory genes function. By contrast, our understanding of the broader macro-evolutionary implications of developmental gene function lags behind. Here we review published data on the floral symmetry gene network (FSGN), and conduct phylogenetic analyses that provide evidence of a link between floral symmetry and breeding systems in angiosperms via dichogamy. Our results suggest that known genes in the FSGN and those yet to be described underlie this association. We posit that the integration of floral symmetry and the roles of other regulatory genes in plant breeding system evolution will provide new insights about macro-evolutionary patterns and processes in flowering plants.  相似文献   
35.
Lyophilized enzyme powder is often used in organic solvents. However, the enzymatic activity decreases during the reaction process. In the present study, the relation between structural stability and enzymatic activity in an organic solvent was investigated. 13C cross-polarization magic angle spinning NMR spectroscopy was used to determine the secondary structure of lyophilized papain in the solid-state. Deconvolution of the peaks of the backbone carbonyl carbons suggested that the proportion of beta-sheet conformation increased after lyophilization from a phosphate buffer solution. The esterification of N-benzyloxycarbonyl phenylalanylalanine amide was attempted using the lyophilized papain as a catalyst in anhydrous 1-propanol. The yield of ester was 46.1% after 48 h at 50 degrees C, but this reaction slowed remarkably after 48 h. When the lyophilized papain was suspended in anhydrous 1-propanol for 7 days without the substrate, the proportion of beta-sheet conformation was further increased and the suspended papain had no activity. These results suggest that the increase in beta-sheet conformation caused inactivation of papain. The increase in beta-sheet conformation caused by both lyophilization and suspension in propanol was found, which was related to a decrease in enzymatic activity.  相似文献   
36.
Historically, explanations for the evolution of floral traits that reduce self-fertilization have tended to focus on selection to avoid inbreeding depression. However, there is growing support for the hypothesis that such traits also play a role in promoting efficient pollen dispersal by reducing anther-stigma interference. The relative importance of these two selective pressures is currently a popular topic of investigation. To date, there has been no theoretical exploration of the relative contributions of selection to avoid the genetic costs of self-fertilization and selection to promote efficient pollen dispersal on the evolution of floral traits. We developed a population genetic model to examine the influence of these factors on the evolution of dichogamy: the temporal separation of anther maturation and stigma receptivity. Our analysis indicates that anther-stigma interference can favor dichogamy even in the absence of in-breeding depression. Although anther-stigma interference and inbreeding depression are the key forces driving the initial evolution of dichogamy, selection to match the timing of pollen dispersal to the availability of ovules at the population level becomes a more potent force opposing the further evolution of dichogamy as the extent of temporal separation increases. This result may help to explain otherwise puzzling phenomena such as why dichogamy is rarely complete in nature and why dichogamy tends to be associated with asynchronous flower presentation.  相似文献   
37.
We present a population genetic model that incorporates aspects of pollinator efficiency and abundance to examine the effect of the local plant community on the evolution of floral trait specialization. Our model predicts that plant species evolve to be pollinator specialists on the most effective and common pollinators when their abundance is low relative to other plant species in the community (i.e., conspecific pollen is relatively rare) and evolve to be pollinator generalists when they are numerically dominant (i.e., conspecific pollen is abundant). Strong flower constancy also favors generalist floral traits. Furthermore, generalist species are predicted to differentiate when there is a concave trade-off in attracting pollinator species with different floral trait preferences. This result implies that populations that evolve toward a generalist strategy may be more prone to speciation. Ours is the first theoretical model to include local species abundance explicitly, despite the fact that it has been previously identified as an important factor in the evolution of plant specialization. Our results add a layer of ecological complexity to previous models of floral evolution and therefore have the potential to improve our power to predict circumstances under which specialized and generalized plant-pollinator interactions should evolve.  相似文献   
38.
Our mechanistic understanding of damage formation in DNA by the direct effect relies heavily on what is known of free radical intermediates studied by EPR spectroscopy. Bridging this information to stable product formation requires methods with comparable sensitivities, a criterion met by the (32)P-post-labeling assay developed by Weinfeld and Soderlind, [Weinfeld,M. and Soderlind,K.-J.M. (1991) (32)P-Postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry, 30, 1091-1097] which when applied to the indirect effect, detected phosphoglycolate (pg) and thymine glycol (Tg). Here we applied this assay to the direct effect, measuring product yields in pUC18 films with hydration levels (Γ) of 2.5, 16 or 23 waters per nucleotide and X-irradiated at either 4 K or room temperature (RT). The yields of pg [G(pg)] for Γ ≈ 2.5 were 2.8 ± 0.2 nmol/J (RT) and 0.2 ± 0.3 nmol/J (4 K), which is evidence that the C4' radical contributes little to the total deoxyribose damage via the direct effect. The yield of detectable base damage [G(B*)] at Γ ≈ 2.5 was found to be 30.2 ± 1.0 nmol/J (RT) and 12.9 ± 0.7 nmol/J (4 K). While the base damage called B*, could be due to either oxidation or reduction, we argue that two reduction products, 5,6-dihydrouracil and 5,6-dihydrothymine, are the most likely candidates.  相似文献   
39.
The lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces a versatile signaling phospholipid, phosphatidylinositol 4,5-bisphosphate. Three PIP5K isozymes, PIP5K1A, PIP5K1B, and PIP5K1C, have been identified in mammals so far. Although the functions of these three PIP5K isozymes have been extensively studied in vitro, the in vivo physiological roles of these PIP5K isozymes remain largely unknown. In this study, we examined the functions of PIP5K1A and PIP5K1B in spermatogenesis, using Pip5k1a-knockout (KO), Pip5k1b-KO, and Pip5k1a/Pip5k1b double (D)-KO mice. Pip5k1a-KO and D-KO males were subfertile and completely sterile, respectively. F-actin in the seminiferous epithelium was disorganized in the D-KO mice, although F-actin bundles at the apical ectoplasmic specialization was not affected. D-KO seminiferous tubules contained a greatly decreased number of elongated spermatids. Flagella of sperm from Pip5k1a-KO and D-KO mice remarkably underwent morphological change, whereas Pip5k1b-KO sperm were morphologically normal. Notably, the flagellar shape of D-KO sperm was more severely impaired than that of Pip5k1a-KO sperm. These results suggest that PIP5K1A and PIP5K1B may coordinately and/or redundantly function in the maintenance of sperm number and morphology during spermatogenesis.  相似文献   
40.
Methionine sulfoxide reductase B (MsrB) is an enzyme that repairs oxidatively damaged proteins by specifically reducing methionine-R-sulfoxide back to methionine. Three MsrBs, localized in different cellular compartments, are expressed in mammals. However, the physiological roles of each MsrB with regard to its location remain poorly understood. Here, we expressed endoplasmic reticulum (ER)-targeted human MsrB3A (hMsrB3A) in Drosophila and examined its effects on various phenotypes. In two independent transgenic lines, both ubiquitous and neuronal expression of hMsrB3A rendered flies resistant to oxidative stress. Interestingly, these flies also showed significantly enhanced cold and heat tolerance. More strikingly, expression of hMsrB3A in the whole body and nervous system extended the lifespan of fruit flies at 29 °C by 43-50% and 12-37%, respectively, suggesting that the targeted expression of MsrB in the ER regulates Drosophila lifespan. A significant increase in lifespan was also observed at 25 °C only when hMsrB3A was expressed in neurons. Additionally, hMsrB3A overexpression significantly delayed the age-related decline in locomotor activity and fecundity. Taken together, our data provide evidence that the ER type of MsrB, MsrB3A, plays an important role in protection mechanisms against oxidative, cold and heat stresses and, moreover, in the regulation of fruit fly aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号