首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   42篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   16篇
  2016年   11篇
  2015年   15篇
  2014年   18篇
  2013年   20篇
  2012年   17篇
  2011年   22篇
  2010年   22篇
  2009年   5篇
  2008年   27篇
  2007年   17篇
  2006年   19篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1973年   4篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1965年   2篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
161.
Swollenin is a protein from Trichoderma reesei that has a unique activity for disrupting cellulosic materials, and it has sequence similarity to expansins, plant cell wall proteins that have a loosening effect that leads to cell wall enlargement. In this study we cloned a gene encoding a swollenin-like protein, Swo1, from the filamentous fungus Aspergillus fumigatus, and designated the gene Afswo1. AfSwo1 has a bimodular structure composed of a carbohydrate-binding module family 1 (CBM1) domain and a plant expansin-like domain. AfSwo1 was produced using Aspergillus oryzae for heterologous expression and was easily isolated by cellulose-affinity chromatography. AfSwo1 exhibited weak endoglucanase activity toward carboxymethyl cellulose (CMC) and bound not only to crystalline cellulose Avicel but also to chitin, while showing no detectable affinity to xylan. Treatment by AfSwo1 caused disruption of Avicel into smaller particles without any detectable reducing sugar. Furthermore, simultaneous incubation of AfSwo1 with a cellulase mixture facilitated saccharification of Avicel. Our results provide a novel approach for efficient bioconversion of crystalline cellulose into glucose by use of the cellulose-disrupting protein AfSwo1.Cellulose is the primary polysaccharide of plant cell wall and the most abundant renewable biomass resource. Biological degradation of cellulose to soluble sugars has long been considered an alternative to the use of starch feedstocks for bioethanol production. Natural cellulose is an ordered, linear polymer of thousands of d-glucose residues linked by β-1,4-glucosidic bonds. Spontaneous crystallization of cellulose molecules due to chemical uniformity of glucose units and the high degree of hydrogen bonding in cellulose can often result in the formation of tightly packed microfibrils (8), which remain inaccessible to cellulolytic enzymes. No single enzyme is able to hydrolyze crystalline cellulose microfibrils completely. Synergistic effects of cellulase mixtures on crystalline cellulose degradation are well known (1, 7, 21). Nevertheless, cost-competitive technology for overcoming the recalcitrance of cellulosic biomass to enhance enzymatic saccharification is still a major impediment to the utilization of cellulosic materials in bioenergy generation.Expansins are plant cell wall proteins that cause cell wall enlargement by a unique loosening effect in an acid-induced manner (15, 20). They are also involved in many physiological processes where cell wall extension occurs, such as pollination, fruit ripening, organ abscission, and seed germination (13, 14). It has been proposed that plant expansins disrupt hydrogen bonding between cellulose microfibrils and other cell wall polysaccharides without hydrolytic activity, causing sliding of cellulose fibers or expansion of the cell wall (18, 19, 27). Swollenin, an expansin-like protein, was isolated and characterized from the cellulolytic filamentous fungus Trichoderma reesei. It has a bimodular structure consisting of a carbohydrate-binding module family 1 (CBM1) domain and an expansin-like domain connected by a linker region rich in serine and threonine. Swollenin exhibits disruption activity on cellulosic materials such as cotton and algal cell walls without releasing any detectable reducing sugars (23). However, effects of cellulose disruption activity on degradation/saccharification of crystalline cellulose have not yet been reported.Here, we report cloning a swollenin-like gene (designated Afswo1) from the filamentous fungus Aspergillus fumigatus. We also report its production by Aspergillus oryzae and characterization of the purified AfSwo1.  相似文献   
162.
Rhesus macaques (Macaca mulatta) are widely used in developing a strategy for vaccination against human immunodeficiency virus by using simian immunodeficiency virus infection as a model system. Because the genome diversity of major histocompatibility complex (MHC) is well known to control the immune responsiveness to foreign antigens, MHC loci in Indian- and Chinese-origin macaques used in the experiments have been characterized, and it was revealed that the diversity of MHC in macaques was larger than the human MHC. To further characterize the diversity of Mamu-A and Mamu-B loci, we investigated a total of 73 different sequences of Mamu-A, 83 sequences of Mamu-B, and 15 sequences of Mamu-I cDNAs isolated from Burmese-origin macaques. It was found that there were one to five expressing genes in each locus. Among the Mamu-A, Mamu-B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and 8 (53.3%), respectively, were novel, and most of the other known alleles were identical to those reported from Chinese- or Indian-origin macaques, demonstrating a genetic mixture between the geographically distinct populations of present day China and India. In addition, it was found that a Mamu haplotype contained at least two highly transcribed Mamu-A genes, because multiple Mamu-A1 cDNAs were obtained from one haplotype. These findings further revealed the diversity and complexity of MHC locus in the rhesus macaques.  相似文献   
163.
164.
The mechanisms by which secretory phospholipases A(2) (PLA(2)s) exert cellular effects are not fully understood. Group IIF PLA(2) (gIIFPLA(2)) is a structurally unique secretory PLA(2) with a long C-terminal extension. Homology modeling suggests that the membrane-binding surface of this acidic PLA(2) contains hydrophobic residues clustered near the C-terminal extension. Vesicle leakage and monolayer penetration measurements showed that gIIFPLA(2) had a unique ability to penetrate and disrupt compactly packed monolayers and bilayers whose lipid composition recapitulates that of the outer plasma membrane of mammalian cells. Fluorescence imaging showed that gIIFPLA(2) could also readily enter and deform plasma membrane-mimicking giant unilamellar vesicles. Mutation analysis indicates that hydrophobic residues (Tyr(115), Phe(116), Val(118), and Tyr(119)) near the C-terminal extension are responsible for these activities. When gIIFPLA(2) was exogenously added to HEK293 cells, it initially bound to the plasma membrane and then rapidly entered the cells in an endocytosis-independent manner, but the cell entry did not lead to a significant degree of phospholipid hydrolysis. GIIFPLA(2) mRNA was detected endogenously in human CD4(+) helper T cells after in vitro stimulation and exogenously added gIIFPLA(2) inhibited the proliferation of a T cell line, which was not seen with group IIA PLA(2). Collectively, these data suggest that unique membrane-binding properties of gIIFPLA(2) may confer special functionality on this secretory PLA(2) under certain physiological conditions.  相似文献   
165.
166.
167.
We compared the host cell range of T-lymphotropic feline leukemia virus (FeLV-T) with that of FeLV subgroup B (FeLV-B) by pseudotype assay in the presence of FeLIX, a truncated envelope glycoprotein of endogenous FeLV. Although both viruses use Pit1 as a receptor and FeLIX does not hamper FeLV-B infection by receptor interference, the host ranges of FeLV-T and -B were not exactly the same, suggesting a different Pit1 usage at the post-binding level. A comparison of Pit1 sequences of various mammalian species indicated that extracellular loop 1 in a topology model deduced with the PHD PredictProtein algorism may be one of the regions responsible for efficient infection by FeLV-T.  相似文献   
168.
The hydrolysis kinetics of trisaccharides consisting of glucose, galactose, and fructose residues with different glycosidic bonds, 1-kestose, d-melezitose, d-raffinose, and lactosucrose, in subcritical water were conducted over the temperature range of 150-230 degrees C and at a constant pressure of 10 MPa. The hydrolysis of trisaccharides in subcritical water proceeded consecutively, i.e., one cleavage of the two bonds antedated the other. The preceding cleavage was not expressed by the first-order kinetics, but by the kinetics considering the concentration of the acidic compounds, which were produced by the degradation of the constituent monosaccharides. The hydrolysis of the constituent disaccharides, except sucrose composed of the alpha-Glc-(1-->2)-beta-Fru bond, obeyed first-order kinetics. All of the rate constants of the hydrolytic kinetics were determined, and the values were found to depend on the type of bond.  相似文献   
169.
A highly sensitive HPLC method for enantioselective determination of carvedilol in human whole blood and plasma was developed. Carvedilol and S-carazolol as an internal standard extracted from whole blood or plasma were separated using an enantioselective separation column (Chiralpak AD column; 2.0 diameter x 250 mm) without any chiral derivatizations. The mobile phase was hexane:isopropanol:diethylamine (78:22:1, v/v). The excitation and emission wavelengths were set at 284 and 343 nm, respectively. The limits of quantification for the S(-)- and R(+)-carvedilol enantiomers in plasma and blood were both 0.5 ng/ml. Intra- and inter-day variations were less than 5.9%. As an application of the assay, concentrations of carvedilol enantiomer in plasma and blood samples from 15 patients treated with carvedilol for congestive heart failure were determined.  相似文献   
170.
Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp(8), Tyr(43), Trp(100), Leu(110), and Tyr(261) in PotB and Trp(46), Asp(108), Glu(169), Ser(196), Asp(198), and Asp(199) in PotC were strongly involved in spermidine uptake and that Tyr(160), Glu(172), and Leu(274) in PotB and Tyr(19), Tyr(88), Tyr(148), Glu(160), Leu(195), and Tyr(211) in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp(8) in PotB was important for insertion of PotB and PotC into membranes. Tyr(43), Trp(100), and Leu(110) in PotB and Trp(46), Asp(108), Ser(196), and Asp(198) in PotC were found to be involved in the interaction with PotD. Leu(110) and Tyr(261) in PotB and Asp(108), Asp(198), and Asp(199) in PotC were involved in the recognition of spermidine, and Trp(100) and Tyr(261) in PotB and Asp(108), Glu(169), and Asp(198) in PotC were involved in ATPase activity of PotA. Accordingly, Trp(100) in PotB was involved in both PotD recognition and ATPase activity, Leu(110) in PotB was involved in both PotD and spermidine recognition, and Tyr(261) in PotB was involved in both spermidine recognition and ATPase activity. Asp(108) and Asp(198) in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号