首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   31篇
  2023年   4篇
  2022年   12篇
  2021年   16篇
  2020年   6篇
  2019年   11篇
  2018年   19篇
  2017年   16篇
  2016年   15篇
  2015年   25篇
  2014年   38篇
  2013年   47篇
  2012年   32篇
  2011年   62篇
  2010年   30篇
  2009年   24篇
  2008年   38篇
  2007年   48篇
  2006年   47篇
  2005年   37篇
  2004年   37篇
  2003年   37篇
  2002年   23篇
  2001年   17篇
  2000年   15篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有748条查询结果,搜索用时 140 毫秒
51.
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.  相似文献   
52.
53.
Honda M  Hashimoto H 《Protoplasma》2007,231(3-4):127-135
Summary. Division and partitioning of microbodies (peroxisomes) of the green alga Klebsormidium flaccidum, whose cells contain a single microbody, were investigated by electron microscopy. In interphase, the rod-shaped microbody is present between the nucleus and the single chloroplast, oriented perpendicular to the pole-to-pole direction of the future spindle. A centriole pair associates with one distal end of the microbody. In prophase, the microbody changes not only in shape, from a rodlike to a branched form, but also in orientation, from perpendicular to parallel to the future pole-to-pole direction. Duplicated centriole pairs are localized in close proximity to both distal ends of the microbody. In metaphase, the elongated microbody flanks the open spindle, with both distal ends close to the centriole pair at either spindle pole. The microbody further elongates in telophase and divides after septum formation (cytokinesis) has started. The association between the centrioles and both distal ends of the microbody is maintained throughout mitosis, resulting in the distal ends of the elongated microbody being fixed at the cellular poles. This configuration of the microbody may be favorable for faithful transmission of the organelle during cell division. After cytokinesis is completed, the microbody reverts to the perpendicular orientation by changing its shape. Microtubules radiating from the centrosomes flank the side of the microbody throughout mitosis. The close association of centrosomes and microtubules with the microbody is discussed in respect to the partitioning of the microbody in this alga. Correspondence: H. Hashimoto, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan. Present address: M. Honda, Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.  相似文献   
54.
The size and number of flowers displayed together on an inflorescence (floral display) influences pollinator attraction and pollen transfer and receipt, and is integral to plant reproductive success and fitness. Life history theory predicts that the evolution of floral display is constrained by trade-offs between the size and number of flowers and inflorescences. Indeed, a trade-off between flower size and flower number is a key assumption of models of inflorescence architecture and the evolution of floral display. Surprisingly, however, empirical evidence for the trade-off is limited. In particular, there is a lack of phylogenetic evidence for a trade-off between flower size and number. Analyses of phylogenetic independent contrasts (PICs) of 251 angiosperm species spanning 63 families yielded a significant negative correlation between flower size and flower number. At smaller phylogenetic scales, analyses of individual genera did not always find evidence of a trade-off, a result consistent with previous studies that have examined the trade-off for a single species or genus. Ours is the first study to support an angiosperm-wide trade-off between flower size and number and supports the theory that life history constraints have influenced the evolution of floral display.  相似文献   
55.
BACKGROUND: Helicobacter pylori mainly inhabit the mucus layer in the gastric mucosa. However, mechanisms involving H. pylori colonization and proliferation in gastric mucosa are not well established. This study focuses on elucidating the role of gastric mucosal cells on growth of H. pylori. MATERIALS AND METHODS: H. pylori was co-cultured with the murine gastric surface mucosal cells (GSM06), and the growth of H. pylori on the cells was assessed by enumerating the colony-forming units (CFU). The H. pylori growth factor in the culture media conditioned by GSM06 cell was purified by HPLC, and the chemical structure of the growth factor was identified by analyses of (1)H- and (13)C-NMR spectra. RESULTS: A marked increase in the number of CFU of H. pylori was observed in the GSM06 cells. The enhanced H. pylori growth was also observed when indirectly incubated with GSM06 cells through semi-permeable membrane. In addition, culture media conditioned by GSM06 cell stimulated H. pylori growth approximately one thousand-fold. By bioassay-guided purification, the H. pylori growth factor was isolated from the conditioned medium of GSM06 cells and identified as L-lactic acid. The H. pylori growth-enhancing activity under microaerobic condition was well correlated with L-lactic acid concentrations in the conditioned media. CONCLUSIONS: This study demonstrates that L-lactic acid secreted by gastric mucosal cells enhances the growth of H. pylori, and this L-lactic acid-dependent growth of H. pylori may be important to the long-term colonization of H. pylori in the stomach.  相似文献   
56.
The dextranase gene, dex, was identified in Streptococcus criceti strain E49 by degenerate PCR and sequenced completely by the gene-walking method. A sequence of 3,960 nucleotides was determined. The dex gene encodes a 1,200-amino acid protein, which has a calculated molecular mass of 128,129.91 and pI of 4.15 and is predicted to be a cell-surface protein. The deduced amino acid sequence of dex showed homology to S. downei dextranase (63.9% identity). Phylogenetic analysis revealed the similarity of the deduced amino acid sequence of dextranases in S. criceti, S. sobrinus, and S. downei. A recombinant form of the protein with six histidine residues tagged in the C-terminus was partially purified and showed dextranase activity on blue-dextran sodium dodecyl sulfate-polyacrylamide gel electrophoresis (BD-SDSPAGE) followed by renaturation. We also detected dextranase activity in S. criceti cell extracts and culture supernatant by renatured BD-SDS-PAGE, whereas no dextranase activity of the cells was observed on blue-dextran brain heart infusion (BD-BHI) agar plates. Furthermore, PCR-based mutations of dextranase indicated that a deletion mutant of the C-terminal region could hydrolyze blue dextrans and that the D453E mutation, W793L mutation, and double mutations (W793L and deletion of the C-terminal region) resulted in a loss of dextranase activity. These findings suggest that Asp-453 and Trp-793 residues of S. criceti dextranase are critical to the enzyme's activity.  相似文献   
57.
Gene silencing by RNA interference in the koji mold Aspergillus oryzae   总被引:1,自引:0,他引:1  
We found the orthologous genes required for RNA interference (RNAi) in the Aspergillus oryzae genome database, and constructed a set of tools for gene silencing using RNAi in A. oryzae. This system utilizes compatible restriction enzyme sites so that only a single target gene fragment is required to create the hairpin RNA cassette. For ease of handling, we also separated the construction of the hairpin RNA cassette for the target gene from its subsequent introduction into the expression vector. Using the brlA gene as a target for RNAi, we detected decreased mRNA levels and a delayed conidiation phenotype in the transformants. Furthermore, even though A. oryzae possesses three copies of the alpha-amylase gene, a single copy of an alpha-amylase RNAi construct was sufficient to downregulate the mRNA levels and decrease the enzymatic activity to 10% of control levels. Gene silencing by RNAi should provide a powerful genetic tool for post-genomic studies of the industrially important fungus A. oryzae.  相似文献   
58.
59.
The tRNA splicing endonuclease (Sen) complex is located on the mitochondrial outer membrane and splices precursor tRNAs in Saccharomyces cerevisiae. Here, we demonstrate that the Sen complex cleaves the mitochondria-localized mRNA encoding Cbp1 (cytochrome b mRNA processing 1). Endonucleolytic cleavage of this mRNA required two cis-elements: the mitochondrial targeting signal and the stem-loop 652–726-nt region. Mitochondrial localization of the Sen complex was required for cleavage of the CBP1 mRNA, and the Sen complex cleaved this mRNA directly in vitro. We propose that the Sen complex cleaves the CBP1 mRNA, which is co-translationally localized to mitochondria via its mitochondrial targeting signal.  相似文献   
60.
Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号