首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1189篇
  免费   115篇
  2023年   22篇
  2022年   28篇
  2021年   51篇
  2020年   41篇
  2019年   46篇
  2018年   43篇
  2017年   31篇
  2016年   54篇
  2015年   93篇
  2014年   83篇
  2013年   85篇
  2012年   111篇
  2011年   98篇
  2010年   52篇
  2009年   37篇
  2008年   67篇
  2007年   48篇
  2006年   47篇
  2005年   26篇
  2004年   37篇
  2003年   35篇
  2002年   24篇
  2001年   5篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1994年   6篇
  1993年   4篇
  1992年   12篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1304条查询结果,搜索用时 31 毫秒
81.
Mutations of CIAS1 have recently been shown to underlie familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS), in three families and one family, respectively. These rare autosomal dominant diseases are both characterized by recurrent inflammatory crises that start in childhood and that are generally associated with fever, arthralgia, and urticaria. The presence of sensorineural deafness that occurs later in life is characteristic of MWS. Amyloidosis of the amyloidosis-associated type is the main complication of MWS and is sometimes associated with FCU. In FCU, cold exposure is the triggering factor of the inflammatory crisis. We identified CIAS1 mutations, all located in exon 3, in nine unrelated families with MWS and in three unrelated families with FCU, originating from France, England, and Algeria. Five mutations--namely, R260W, D303N, T348M, A439T, and G569R--were novel. The R260W mutation was identified in two families with MWS and in two families with FCU, of different ethnic origins, thereby demonstrating that a single CIAS1 mutation may cause both syndromes. This result indicates that modifier genes are involved in determining either a MWS or a FCU phenotype. The finding of the G569R mutation in an asymptomatic individual further emphasizes the importance of such modifier a gene (or genes) in determining the disease phenotype. Identification of this gene (or these genes) is likely to have significant therapeutic implications for these severe diseases.  相似文献   
82.
Present in the extracellular matrix and membranes of virtually all animal cells, proteoglycans (PGs) are among the first host macromolecules encountered by infectious agents. Because of their wide distribution and direct accessibility, it is not surprising that pathogenic bacteria have evolved mechanisms to exploit PGs for their own purposes, including mediating attachment to target cells. This is achieved through the expression of adhesins that recognize glycosaminoglycans (GAGs) linked to the core protein of PGs. Some pathogens, such as Bordetella pertussis and Chlamydia trachomatis, may express more than one GAG-binding adhesin. Bacterial interactions with PGs may also facilitate cell invasion or systemic dissemination, as observed for Neisseria gonorrhoeae and Mycobacterium tuberculosis respectively. More-over, pathogenic bacteria can use PGs to enhance their virulence via a shedding of PGs that leads to there lease of effectors that weaken the host defences.The exploitation of PGs by pathogenic bacteria is thus a multifaceted mechanistic process directly related to the potential virulence of a number of microorganisms.  相似文献   
83.
The German-French biological experiment AQUARIUS-XENOPUS which flew on the Soyuz flight Andromede to the International Space Station ISS (launched October 21, 2001 in Baikonour/Kazakhstan) was extended by an outreach project. Pupils of class 10 to 12 from Ulm/D and Nancy-Tomblaine/F studied swimming behavior of Xenopus tadpoles on ground. They were instructed to perform all experimental steps following the protocol of similar video recordings on ISS. After the flight, they evaluated the kinetics of swimming of both ground controls and space animals. The pupil project included theoretical components to introduce them to the field of gravitational biology. One feature of the project was the exchange of ideas between pupils by meetings which took place in Ulm (June 2001), Nancy (February 2002) and Paris (May 2002). We consider our approach as a successful way to include young people in space experiments on a cheap cost level and to bring ideas of gravitational biology into the curricula of European schools.  相似文献   
84.
In vitro selections for catalytic activity have been designed for the isolation of genes encoding enzymes from libraries of proteins displayed on filamentous phages. The proteins are generally expressed as C-terminal fusions with the N-terminus of the minor coat protein p3 for display on phages. As full-length cDNAs generally contain several stop codons near their 3′ end, this approach cannot be used for their expression on the surface of phages. Here we show that in vitro selection for catalytic activity is compatible with a system for expression of proteins as N-terminal fusions on the surface of bacteriophages. It is highlighted for the Stoffel fragment of Taq DNA polymerase I and makes use of (p3–Jun/Fos–Stoffel fragment) fusions. The efficiency of the selection is measured by an enrichment factor found to be about 55 for a phage polymerase versus a phage not expressing a polymerase. This approach could provide a method for the functional cloning of nucleotidyl transferases from cDNA libraries using filamentous phage display.  相似文献   
85.
86.
Cells can usefully be equated to autocatalytic networks that increase in mass and then divide. To begin to model relationships between autocatalytic networks and cell division, we have written a program of artificial chemistry that simulates a cell fed by monomers. These monomers are symbols that can be assembled into linear (non-branched) polymers to give different lengths. A reaction is catalysed by a particular polymer or 'enzyme' that may itself be a reactant of that reaction (autocatalysis). These reactions are only studied within the confines of the 'cell' or 'reaction chamber'. There is a flux of material through the cell and eventually the mass of polymers reaches a threshold at which we analyse the cell. Our results indicate a similarity between the connectivity of the reaction network and that of real metabolic networks. Developing the model will entail attributing increased probabilities of reactions to polymers that are colocalised to evaluate the consequences of the dynamics of large assemblies of diverse molecules (hyperstructures) and of cell division.  相似文献   
87.
The multibody contribution to the potential of mean force (PMF) of hydrophobic association of four methane molecules in water was investigated by means of umbrella-sampling molecular dynamics. Two systems were considered: (i). a trigonal pyramid with three methane molecules at contact distance forming a fixed base, the fourth molecule being placed on the top with variable distance from the base; and (ii). a regular uniformly expanding tetrahedron. Methane-methane distances as far as 12.5 A, i.e. beyond the second solvent-separated minimum of the PMF, were considered to address the baseline problem. In contrast to the small effect in the three-body case studied previously (Protein Sci 9 (2000) 1235), the multibody contribution was found to amount to approximately 0.2 kcal/mol per methane-methane pair, or approximately 25% of the depth of the contact minimum in the PMF. The main effect of the multibody contribution to the PMF is a reduction of the height of the barrier between the contact and solvent separated minima and a narrowing of the region of its maximum, while the region of the contact minimum is affected only weakly. The reduction of the barrier is due to four-body contributions. The cooperative contributions to the PMF agree very well with those computed from the molecular surface of the systems under consideration, which further supports earlier observations that the molecular surface can be used with good accuracy to describe the energetics of hydrophobic association.  相似文献   
88.
We recently reported a theoretical characterization of representative ensembles of statistical-coil conformations for tetrapeptides with unblocked termini in aqueous solution, at pH 7. The results showed good agreement between the computed Boltzmann-averaged and experimentally-determined values for both the vicinal coupling constants 3JNH and the -proton chemical shifts. Here, we carry out a cluster analysis of the ensembles of conformations generated in that study, and use them to compute the Boltzmann-averaged values of the quantum-chemical 13C chemical shifts for different amino acids in the unblocked tetrapeptides GGXA (where X stands for Phe, Arg, His, Glu, Ile, Lys, Gln, Tyr, Leu, Thr, Ala, Gly and Val). The values of the 13C chemical shifts in these thirteen amino acids (for which experimental data are available) were computed by using Density Functional Theory with a 6–311+G(2d,p) basis set. Good agreement is found in terms of both the correlation coefficient (R) and standard deviations of the difference between the computed Bolztmann-averaged and the NMR-determined values for the 13C chemical shifts. These results suggest that it may be possible to build a reliable theoretically-derived database of chemical shifts for statistical-coil residues. The results of the current study contribute to our understanding of the relations between chemical shifts, dihedral angles and vicinal coupling constants, 3JNH. In addition, they can shed light as to how the statistical-coilconformation is related to the conformational preference of more structured states, such as the -helical conformation.  相似文献   
89.
Bacterial artificial chromosome (BAC) libraries are an important tool for positional cloning, gene analysis and physical mapping. During studies using BAC clones, it is often necessary to organize them into contiguous sequences (contigs). To finalize, join and extend the contigs, both cloning and sequencing of the ends of the inserts are required. Here, we describe a low-cost, accessible, fast and powerful method for the routine isolation of BAC ends. This method allows the isolation of 20 BAC clone ends in one day. The analysis of the ends reveals fragment sizes compatible with sequencing, and the structure of these clones allows the sequencing of both ends using the same plasmid. Moreover, long end fragments can be sequenced in both directions.  相似文献   
90.
Cellular Retinoic Acid Binding Protein II (CRABPII) has been reengineered to specifically bind and react with all‐trans‐retinal to form a protonated Schiff base. Each step of this process has been dissected and four residues (Lys132, Tyr134, Arg111, and Glu121) within the CRABPII binding site have been identified as crucial for imine formation and/or protonation. The precise role of each residue has been examined through site directed mutagenesis and crystallographic studies. The crystal structure of the R132K:L121E‐CRABPII (PDB‐3I17) double mutant suggests a direct interaction between engineered Glu121 and the native Arg111, which is critical for both Schiff base formation and protonation. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号