首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   28篇
  2019年   4篇
  2018年   4篇
  2016年   4篇
  2015年   9篇
  2014年   12篇
  2013年   19篇
  2012年   16篇
  2011年   9篇
  2010年   14篇
  2009年   11篇
  2008年   19篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   16篇
  2003年   13篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1994年   5篇
  1993年   5篇
  1992年   13篇
  1991年   6篇
  1990年   8篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   9篇
  1975年   13篇
  1974年   8篇
  1973年   2篇
  1971年   2篇
  1970年   5篇
  1969年   5篇
  1968年   5篇
  1967年   4篇
  1966年   3篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
21.
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form.  相似文献   
22.
23.
Abstract

The bleomycins, a group of antitumor antibiotics (Figure 1), cause the degradation of DNA by a process requiring iron(II) and dioxygen (1,2). DNA degradation appears to involve two steps: association of the drug with the nucleic acid and degradation of the DNA. As part of studies directed toward achieving an understanding of how the bleomycins degrade DNA, we have examined various properties of the drug using a variety of chemical and physico- chemical techniques, including NMR and Mössbauer spectroscopy. We have studied both the interaction of the antibiotic with its target (DNA) as well as its association with its metal ion cofactor. This work has been performed on the intact drug and its derivatives as well as on synthetic models of the parent drug. This paper reviews and updates the recent work from this laboratory on the bleomycins.  相似文献   
24.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
25.
26.
Consistent with its function as a chloride channel regulated entirely from the cytoplasmic side of the plasma membrane, the cystic fibrosis transmembrane conductance regulator (CFTR) glycoprotein exposes little of its mass on the exterior surface of cells. The first and fourth extracytoplasmic loops (ELs) contain approximately 15 and 30 residues, respectively; the other four ELs are extremely short. To examine the influence of missense mutants in ELs detected in patients with cystic fibrosis, we have expressed them in mammalian (baby hamster kidney (BHK21)) cells and assessed their biosynthetic processing and chloride channel activity. In contrast to previous findings that 18 of 30 disease-associated missense mutations in cytoplasmic loops caused retention of the nascent polypeptides in the endoplasmic reticulum, all the EL mutants studied matured and were transported to the cell surface. This pronounced asymmetry is consistent with the notion that endoplasmic reticulum quality control of nascent CFTR is exerted primarily on the cytoplasmic side of the membrane. Although this set of EL mutations has little effect on CFTR maturation, most of them seriously compromise its chloride channel activity. Substitutions at six different positions in EL1 and single positions in EL2 and EL4 all destabilized the open state, some of them severely, indicating that the ELs contribute to the stability of the CFTR ion pore.  相似文献   
27.
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.  相似文献   
28.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. The two NBDs possess different properties (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) and may play different roles during solute transport. We now report that NBD1 has moderately higher affinity for ATP than NBD2. The consequence of this difference is that the overall Kd value for wild-type MRP1 is mainly determined by ATP binding at NBD1. This conclusion is supported by the following: 1) mutation of the cysteine residue at 682 to alanine (C682A) in Walker A motif in NBD1 decreases the Kd value, indicating increased affinity for ATP; 2) mutation of the alanine residue at 1331 to cysteine (A1331C) in the Walker A motif of NBD2 does not have an effect on the Kd value; and 3) photolabeling of the protein with a cysteine residue in the Walker A motif of NBD1 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD2. In contrast, the Km for ATP in support of LTC4 transport is mainly determined by ATP hydrolysis at NBD2. This conclusion is supported by the following: 1) although mutation of A1331C does not have an effect on the Kd value, the Km values measured from LTC4 transport by proteins with this mutation in NBD2 are much higher than the proteins with wild-type NBD2, implying that the A1331C mutation affects ATP binding/hydrolysis at NBD2; and 2) ATP-dependent LTC4 transport by the protein with a cysteine residue in the Walker A motif of NBD2 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD1. Our previous results indicated that ATP binding at NBD1 at low concentration enhanced ATP binding/hydrolysis at NBD2. All of these results support the notion that ATP binding at NBD1 at low concentration plays a more important regulatory role than the binding at high ATP concentration and that ATP hydrolysis at NBD2 plays a dominant role in the ATP-dependent LTC4 transport.  相似文献   
29.
Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of resistance of four buffalograsses (NE91-118, 'Bonnie Brae', 'Cody', and 'Tatanka') previously identified as resistant to the western chinch bug, Blissus occiduus Barber. Antibiosis studies found no significant differences in western chinch bug fecundity, nymphal development, or survival among the resistant and susceptible buffalograsses. Tolerance studies indicated that NE91-118, Cody, and Tatanka exhibited moderate-to-high levels of tolerance based on western chinch bug damage ratings and plant height, whereas Bonnie Brae exhibited moderate-to-low levels of tolerance. Choice studies indicated the presence of antixenosis in NE91-118, whereas Cody and Tatanka showed little or no antixenosis. Scanning electron microscopy was used to disclose morphological differences between NE91-118 (resistant) and '378' (susceptible). The epicuticular wax structures and trichome densities were similar between 378 and NE91-118, suggesting that morphological structures do not contribute to NE91-118 antixenosis.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号