首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14928篇
  免费   1133篇
  国内免费   809篇
  2024年   20篇
  2023年   160篇
  2022年   383篇
  2021年   762篇
  2020年   461篇
  2019年   591篇
  2018年   569篇
  2017年   409篇
  2016年   570篇
  2015年   854篇
  2014年   960篇
  2013年   1077篇
  2012年   1304篇
  2011年   1193篇
  2010年   747篇
  2009年   659篇
  2008年   741篇
  2007年   693篇
  2006年   591篇
  2005年   520篇
  2004年   458篇
  2003年   370篇
  2002年   329篇
  2001年   308篇
  2000年   255篇
  1999年   230篇
  1998年   148篇
  1997年   147篇
  1996年   150篇
  1995年   110篇
  1994年   111篇
  1993年   81篇
  1992年   134篇
  1991年   102篇
  1990年   78篇
  1989年   78篇
  1988年   63篇
  1987年   71篇
  1986年   64篇
  1985年   50篇
  1984年   48篇
  1983年   41篇
  1982年   24篇
  1981年   13篇
  1980年   16篇
  1979年   19篇
  1977年   14篇
  1976年   11篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
921.
922.
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.  相似文献   
923.
The central importance of protein phosphorylation in plant defense responses has been demonstrated by the isolation of several disease-resistance genes that encode protein kinases. In addition, there are many reports of changes in protein phosphorylation accompanying plant responses to pathogens. In contrast, little is known about the role of protein dephosphorylation in regulating plant defenses. We report that expression of the LePP2Ac1 gene, which encodes a catalytic subunit of the heterotrimeric protein phosphatase 2A (PP2Ac), is rapidly induced in resistant tomato leaves upon inoculation with an avirulent strain of Pseudomonas syringae pv. tomato. By analysis of PP2Ac gene sequences from several plant species, we found that PP2Ac genes cluster into two subfamilies, with LePP2Ac1 belonging to subfamily I. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana was used to suppress expression of genes from subfamily I and not from subfamily II. The PP2Ac-silenced plants had greatly decreased PP2A activity, constitutively expressed pathogenesis-related (PR) genes, and developed localized cell death in stems and leaves. In addition, the plants were more resistant to a virulent strain of P. syringae pv. tabaci and showed an accelerated hypersensitive response (HR) to effector proteins from both P. syringae and the fungal pathogen, Cladosporium fulvum. Thus, catalytic subunits of PP2Ac subfamily I act as negative regulators of plant defense responses likely by de-sensitizing protein phosphorylation cascades.  相似文献   
924.
The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is required for bacterial pathogenicity on plants and elicitation of the hypersensitive response (HR), a programmed cell death (PCD) that occurs on resistant plants. Cosmid pHIR11 enables non-pathogens to elicit an HR dependent upon the TTSS and the effector HopPsyA. We used pHIR11 to determine that effectors HopPtoE, avirulence AvrPphEPto, AvrPpiB1Pto, AvrPtoB, and HopPtoF could suppress a HopPsyA-dependent HR on tobacco and Arabidopsis. Mixed inoculum and Agrobacterium-mediated transient expression experiments confirmed that suppressor action occurred within plant cells. These suppressors, with the exception of AvrPpiB1Pto, inhibited the expression of the tobacco pathogenesis-related (PR) gene PR1a. DC3000 suppressor mutants elicited an enhanced HR consistent with these mutants lacking an HR suppressor. Additionally, HopPtoG was identified as a suppressor on the basis of an enhanced HR produced by a hopPtoG mutant. Remarkably, these proteins functioned to inhibit the ability of the pro-apoptotic protein, Bax to induce PCD in plants and yeast, indicating that these effectors function as anti-PCD proteins in a trans-kingdom manner. The high proportion of effectors that suppress PCD suggests that suppressing plant immunity is one of the primary roles for DC3000 effectors and a central requirement for P. syringae pathogenesis.  相似文献   
925.
Tang B  Tang M  Du YM  Liu CJ  Hong ZG  Luo HY  Hu XW  Song YL  Xi JY  Hescheler J 《生理学报》2004,56(5):625-631
为了从离子通道水平上探讨机体低氧适应的离子机制,本实验将雄性 SD 大鼠随机分为常氧对照组和慢性间歇性低氧组[氧浓度(10 ± 0.5) %, 间断缺氧每天 8 h]。用酶解法急性分离单个大鼠肺内动脉平滑肌细胞(pulmonary artery smoothmuscle cells, PASMCs),以全细胞膜片钳技术记录 PASMCs 膜上的电压门控性钾通道 (voltage-gated potassium channel, KV) 电流,观察急性缺氧对慢性间歇性低氧大鼠 PASMCs 的 KV 的影响, 为机体适应低氧能力提供实验依据。结果显示:⑴常氧对照组在电流钳下,急性缺氧可使膜电位明显去极化(由-47.2 ±2.6 mV 去极到 -26.7 ±1.2 mV ); 在电压钳下, 急性缺氧可显著抑制 KV电流( 60 mV 时, KV电流密度从 153.4 ± 9.5 pA/pF降到 70.1 ± 10.6 pA/pF), 峰电流的抑制率为(57.6 ± 3.3) %, 电流-电压关系曲线向右下移。⑵慢性间歇性低氧组KV电流密度随低氧时间延长而逐渐减少(慢性低氧10 d后就有显著性意义),电流- 电压关系曲线逐渐右下移。⑶急性缺氧对慢性间歇性低氧大鼠PASMCs KV电流的抑制作用随慢性间歇性低氧时间延长而逐渐减弱。上述观察结果提示慢性间歇性低氧减弱急性缺氧对 KV 的抑制, 这可能是机体低氧适应的一种重要机制。  相似文献   
926.
927.
In many sunflower-growing regions of the world, Sclerotinia sclerotiorum (Lib.) de Bary is the major disease of sunflower (Helianthus annuus L.). In this study, we mapped and characterized quantitative trait loci (QTL) involved in resistance to S. sclerotiorum midstalk rot and two morphological traits. A total of 351 F3 families developed from a cross between a resistant inbred line from the germplasm pool NDBLOS and the susceptible line CM625 were assayed for their parental F2 genotype at 117 codominant simple sequence repeat markers. Disease resistance of the F3 families was screened under artificial infection in field experiments across two sowing times in 1999. For the three resistance traits (leaf lesion, stem lesion, and speed of fungal growth) and the two morphological traits, genotypic variances were highly significant. Heritabilities were moderate to high (h2=0.55–0.89). Genotypic correlations between resistance traits were highly significant (P<0.01) but moderate. QTL were detected for all three resistance traits, but estimated effects at most QTL were small. Simultaneously, they explained between 24.4% and 33.7% of the genotypic variance for resistance against S. sclerotiorum. Five of the 15 genomic regions carrying a QTL for either of the three resistance traits also carried a QTL for one of the two morphological traits. The prospects of marker-assisted selection (MAS) for resistance to S. sclerotiorum are limited due to the complex genetic architecture of the trait. MAS can be superior to classical phenotypic selection only with low marker costs and fast selection cycles.  相似文献   
928.
The alkaline protease gene, apr, from Bacillus licheniformis 2709 was cloned into a Bacillus shuttle expression vector, pHL, to yield the recombinant plasmid pHL-apr. The pHL-apr was expressed in Bacillus subtilis WB600, yielding a high expression strain BW-016. The amount of alkaline protease produced in the recombinant increased by 65% relative to the original strain. SDS-PAGE analysis indicated a Mr of 30.5 kDa. The amino acid sequence deduced from the DNA sequence analysis revealed a 98% identity to that of Bacillus licheniformis 6816.  相似文献   
929.
By analyzing the dynamic behaviors of the transiently chaotic neural network and greedy heuristic for the maximum independent set (MIS) problem, we present an improved transiently chaotic neural network for the MIS problem in this paper. Extensive simulations are performed and the results show that this proposed transiently chaotic neural network can yield better solutions to p-random graphs than other existing algorithms. The efficiency of the new model is also confirmed by the results on the complement graphs of some DIMACS clique instances in the second DIMACS challenge. Moreover, the improved model uses fewer steps to converge to stable state in comparison with the original transiently chaotic neural network.  相似文献   
930.
To evaluate the cytoprotection mechanism of selenium against cholestane-3beta,5alpha,6beta-triol (3-triol)-induced vascular smooth muscle cells (VSMCs) damage, cell viability was analyzed by 3-(4,5-dimethylthiazol-2 -yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell count, the percentage release of lactate dehydrogenase (LDH) from the cell was assessed, and apoptosis was detected by DNA laddering and flow cytometric analysis. Meanwhile, the activity of glutathione peroxidase (GPx) of VSMCs was measured. The results showed that 3-triol could inhibit proliferation of VSMCs time-dependently and dose-dependently, increase the percentage release of LDH and induce VSMCs apoptosis. While the cytotoxicity and cells apoptosis induced by 3-triol was attenuated by pretreatment of cells with low concentration of sodium selenite, and the longer the pretreated time was, the stronger the inhibition was. Preincubation of cells with sodium selenite (50 nM) for 12 or 24 h before 1, 5, 10, 25, or 50 microM 3-triol exposure, the cell viabilities increased 28.5% (P<0.05), 18.3%, 197.6% (P<0.01), 66.7%, 50.0% or 35.1% (P<0.05), 62.3% (P<0.05), 329.6% (P<0.01), 221.3% (P<0.05), 74.0% compared with the control cells, respectively. When the cells were preincubated with sodium selenite (50 nM) for 12 or 24 h before exposure to 3-triol (10 microM), the percent of apoptotic cells reduced from 30.47+/-15.34% to 26.88+/-17.32% or 7.41+/-5.46% (P<0.05). With preincubation of sodium selenite (50 nM) for 24 h, the GPx activity of VSMCs increased 18.5% compared with control (P<0.05). In conclusion, the results suggested that incubated VSMCs could absorb and transfer selenite as selenoprotrein, such as GPx, if the time is long enough and VSMCs selenoproteins can protect markedly against apoptosis and damage induced by 3-triol in VSMCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号