首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4511篇
  免费   468篇
  4979篇
  2023年   21篇
  2022年   43篇
  2021年   79篇
  2020年   48篇
  2019年   66篇
  2018年   69篇
  2017年   68篇
  2016年   118篇
  2015年   181篇
  2014年   195篇
  2013年   236篇
  2012年   314篇
  2011年   320篇
  2010年   177篇
  2009年   167篇
  2008年   234篇
  2007年   243篇
  2006年   239篇
  2005年   202篇
  2004年   205篇
  2003年   196篇
  2002年   182篇
  2001年   70篇
  2000年   68篇
  1999年   64篇
  1998年   86篇
  1997年   42篇
  1996年   46篇
  1995年   40篇
  1994年   41篇
  1993年   40篇
  1992年   57篇
  1991年   68篇
  1990年   42篇
  1989年   52篇
  1988年   46篇
  1987年   40篇
  1986年   46篇
  1985年   37篇
  1984年   44篇
  1983年   30篇
  1982年   40篇
  1981年   24篇
  1980年   26篇
  1978年   20篇
  1977年   19篇
  1975年   21篇
  1974年   33篇
  1973年   20篇
  1966年   21篇
排序方式: 共有4979条查询结果,搜索用时 15 毫秒
41.
The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.  相似文献   
42.
The use of fullerenes with two or more adducts as acceptors has been recently shown to enhance the performance of bulk‐heterojunction solar cells using poly(3‐hexylthiophene) (P3HT) as the donor. The enhancement is caused by a substantial increase in the open‐circuit voltage due to a rise in the fullerene lowest unoccupied molecular orbital (LUMO) level when going from monoadducts to multiadducts. While the increase in the open‐circuit voltage is obtained with many different polymers, most polymers other than P3HT show a substantially reduced photocurrent when blended with fullerene multiadducts like bis‐PCBM (bis adduct of Phenyl‐C61‐butyric acid methyl ester) or the indene C60 bis‐adduct ICBA. Here we investigate the reasons for this decrease in photocurrent. We find that it can be attributed partly to a loss in charge generation efficiency that may be related to the LUMO‐LUMO and HOMO‐HOMO (highest occupied molecular orbital) offsets at the donor‐acceptor heterojunction, and partly to reduced charge carrier collection efficiencies. We show that the P3HT exhibits efficient collection due to high hole and electron mobilities with mono‐ and multiadduct fullerenes. In contrast the less crystalline polymer Poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl (PCDTBT) shows inefficient charge carrier collection, assigned to low hole mobility in the polymer and low electron mobility when blended with multiadduct fullerenes.  相似文献   
43.
The BRCT domain is a highly conserved module found in many proteins that participate in DNA damage checkpoint regulation, DNA repair, and cell cycle control. Here we describe the cloning, characterization, and targeted mutagenesis of Brctx, a novel gene with a BRCT motif. Brctx was found to be expressed ubiquitously in adult tissues and during development, with the highest levels found in testis. Brctx-deficient mice develop normally, show no pathological abnormalities, and are fertile. BRCTx binds to the C terminus of hRAD18 in yeast two-hybrid and immunoprecipitation assays and colocalizes with this protein in the nucleus. Despite this, Brctx-deficient murine embryonic fibroblasts (MEFs) do not show overt sensitivity to DNA-damaging agents. MEFs from Brctx-deficient embryos grow at a similar rate to wild-type MEF CD4/CD8 expressions, and the cell cycle parameters of thymocytes from wild-type and Brctx knockout animals are indistinguishable. Intriguingly, the BRCT domain of BRCTx is responsible for mediating its localization to the nucleus and centrosome in interphase cells. We conclude that, although highly conserved, Brctx is not essential for the above-mentioned processes and may be redundant.  相似文献   
44.
We demonstrate the accurate picoliter-scale dispensing of active proteins using a novel laser transfer technique. Droplets of protein solution are dispensed onto functionalized glass slides and into plastic microwells, activating as small as 50-microm diameter areas on these surfaces. Protein microarrays fabricated by laser transfer were assayed using standard fluorescent labeling techniques to demonstrate successful protein and antigen binding. These results indicate that laser transfer does not damage the active site of the dispensed protein and that this technique can be used to successfully fabricate a functioning protein microarray. Also, as a result of the efficient nature of the process, material usage is reduced by two to four orders of magnitude compared to conventional pin dispensing methods for protein spotting.  相似文献   
45.
46.
47.
The dissolution of biomass into ionic liquids (ILs) has been shown to be a promising alternative biomass pretreatment technology, facilitating faster breakdown of cellulose through the disruption of lignin and the decrystallization of cellulose. Both biological and chemical catalysis have been employed to enhance the conversion of IL-treated biomass polysaccharides into monomeric sugars. However, biomass-dissolving ILs, sugar monomers, and smaller carbohydrate oligomers are all soluble in water. This reduces the overall sugar content in the recovered solid biomass and complicates the recovery and recycle of the IL. Near-complete recovery of the IL and the holocellulose is essential for an IL-based pretreatment technology to be economically feasible. To address this, a solvent extraction technique, based on the chemical affinity of boronates such as phenylboronic acid and naphthalene-2-boronic acid for sugars, was applied to the extraction of glucose, xylose, and cellobiose from aqueous mixtures of 1-ethyl-3-methylimidazolium acetate. It was shown that boronate complexes could extract up to 90% of mono- and disaccharides from aqueous IL solutions, 100% IL systems, and hydrolysates of corn stover containing IL. The use of boronate complexes shows significant potential as a way to recover sugars at several stages in ionic liquid biomass pretreatment processes, delivering a concentrated solution of fermentable sugars, minimizing toxic byproducts, and facilitating ionic liquid cleanup and recycle.  相似文献   
48.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   
49.
50.
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号