全文获取类型
收费全文 | 589篇 |
免费 | 35篇 |
国内免费 | 1篇 |
专业分类
625篇 |
出版年
2024年 | 3篇 |
2023年 | 6篇 |
2022年 | 13篇 |
2021年 | 15篇 |
2020年 | 12篇 |
2019年 | 11篇 |
2018年 | 14篇 |
2017年 | 8篇 |
2016年 | 21篇 |
2015年 | 18篇 |
2014年 | 22篇 |
2013年 | 39篇 |
2012年 | 38篇 |
2011年 | 40篇 |
2010年 | 22篇 |
2009年 | 16篇 |
2008年 | 31篇 |
2007年 | 28篇 |
2006年 | 30篇 |
2005年 | 35篇 |
2004年 | 24篇 |
2003年 | 34篇 |
2002年 | 24篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1997年 | 8篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 9篇 |
1993年 | 6篇 |
1992年 | 8篇 |
1991年 | 8篇 |
1990年 | 9篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1978年 | 2篇 |
1974年 | 1篇 |
1973年 | 3篇 |
1972年 | 1篇 |
1971年 | 3篇 |
1970年 | 1篇 |
排序方式: 共有625条查询结果,搜索用时 15 毫秒
71.
Matsumoto K Nagao R Murata T Arai Y Kichise T Nakashita H Taguchi S Shimada H Doi Y 《Biomacromolecules》2005,6(4):2126-2130
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants. 相似文献
72.
Catla catla, catla (150 +/- 20 g) were fed a diet containing seed of Achyranthes aspera (0.5%) and control diet without A. aspera for four weeks prior to and after ip injection with chicken erythrocytes. Fish were sampled for four consecutive weeks after immunization. Hemagglutination antibody titers were significantly higher in the test group of fishes compared with the control group. Serum globulin levels were significantly (P(t-test) < 0.05) higher in the test group than control group on days 14 and 21. Anti-trypsin activity due to total serum protease inhibitors and alpha1-antiprotease was also significantly (P(t-test) < 0.05) higher in the test group of fishes than the control. RNA/DNA ratio of spleen and kidney was also significantly (P(t-test) < 0.05) higher in test group than the control group. All these results confirm that A. aspera enhances the immunity of catla. 相似文献
73.
74.
Kazuki Nakajima Emi Ito Kazuaki Ohtsubo Ken Shirato Rina Takamiya Shinobu Kitazume Takashi Angata Naoyuki Taniguchi 《Molecular & cellular proteomics : MCP》2013,12(9):2468-2480
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS.Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells.Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.Protein glycosylation, which is the most abundant post-translational modification, has important roles in many biological processes by modulating conformation and stability, whereas its dysregulation is associated with various diseases such as diabetes and cancer (1, 2). Glycosylation is regulated by various factors including glucose metabolism, the availability and localization of nucleotide sugars, and the expression and localization of glycosyltransferases (3, 4). Thus, ideally all of these components should be considered when detecting changes in a dynamic fashion; namely, it is necessary not only to take a snapshot but also to make movies of the dynamic changes in glycan metabolism.Glucose is used by living cells as an energy source via the glycolytic pathway as well as a carbon source for various metabolites including nucleotide sugars (e.g. UDP-GlcNAc and CMP-NeuAc). These nucleotide sugars are transported into the Golgi apparatus, and added to various glycans on proteins. UDP-GlcNAc is the donor substrate for N-acetylglucosaminyl (GlcNAc)1 transferases; alternatively, it is used in the cytosol for O-GlcNAc modification (i.e. O-GlcNAcylation) of intracellular proteins (5). The UDP-GlcNAc synthetic pathway is complex as it is a converging point of glucose, nucleotide, fatty acid and amino acid metabolic pathways. Thus, the metabolic flow of glucose modulates the branching patterns of N-glycans via UDP-GlcNAc concentrations because many of the key GlcNAc transferases that determine the branching patterns have widely different Km values for UDP-GlcNAc ranging from 0.04 mm to 11 mm (6, 7). Indeed, it was demonstrated that the branching formation of N-glycans in T cells is stimulated by the supply from the hexosamine pathway, whereby it regulates autoimmune reactions promoted by T cells (8).UDP-GlcNAc is also used for the synthesis of CMP-NeuAc, the donor substrate for sialyltransferases (9). The CMP-NeuAc concentration is controlled by the feedback inhibition of UDP-GlcNAc epimerase/ManNAc kinase by the final product CMP-NeuAc, and hence a high CMP-NeuAc level reduces metabolic flow in CMP-NeuAc de novo synthesis (10). However, there is still only limited information about how the levels of nucleotide sugars dynamically change in response to the environmental cues, and how such changes are reflected in the glycosylation of proteins.Stable isotope labeling is a promising approach to quantify metabolic changes in response to external cues (11, 12). For example, the use of nuclear magnetic resonance to obtain isotopomer signals of metabolically labeled molecules has been applied to trace the flux in glycolysis and fatty acid metabolism (13). An approach based on the mass isotopomers of labeled metabolites with 13C6-glucose has been developed to monitor the UDP-GlcNAc synthetic pathway (13–15). The method based on the labeling ratio of each metabolite related to UDP-GlcNAc synthesis has clarified the contribution of each metabolic pathway (14). Moseley reported a novel deconvolution method for modeling UDP-GlcNAc mass isotopomers (15).Previous studies into the use of nucleotide sugars in glycosylation have relied on the specific detection of metabolically radiolabeled glycans (16). It is possible not only to deduce the glycan structures but also to trace their relative contributions to glycan synthesis without MS. On the other hand, mass isotopomer analysis of glycans labeled with stable isotope provides the ratios of labeled versus unlabeled molecules from MS spectra and structural details of the glycans. However, there are only a limited number of publications reporting the application of stable isotope labeling of glycans for monitoring the dynamics of glycans (17). To date, there have been no reports describing a systematic method for tracing cellular GlcNAc biosynthesis and use based on mass isotopomer analysis.The aim of this study was to extend our knowledge of the synthesis and metabolism of UDP-GlcNAc as well as its use in the synthesis of CMP-NeuAc, N- and O-glycans. We recently developed a conventional HPLC method for simultaneous determination of nucleotide sugars including unstable CMP-NeuAc (18). We first established an LC-MS method for isotopomer analysis of 13C6-glucose labeled nucleotide sugars for tracing UDP-GlcNAc metabolism from synthesis to use, because previous methods were not suitable for estimating UDP-GlcNAc use in CMP-NeuAc de novo synthesis (15). We also established a method for isotopomer analysis of labeled N- and O-glycan to monitor the metabolic flow of hexosamine into glycans. Using these two methods, we demonstrated the differences in the use of hexosamines between hepatoma and pancreatic insulinoma cell lines. Our approach may be useful for identifying a metabolic “bottleneck” that governs the turnover speed and patterns of cellular glycosylation, which may be relevant for various applications including glycoprotein engineering and discovery of disease biomarkers. 相似文献
75.
76.
The beta glycoside of the tetrasaccharide sequence beta-Ant-(1-->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->2)-l-Rhap, whose aglycon allows conjugation to proteins, was synthesized for the first time. A stepwise synthetic approach was applied with thioglycosides as glycosyl donors, and the beta anomer of the compound was obtained equipped with a spacer group whose further transformation allows conjugation to suitable carriers. To synthesize the beta-anthrosyl linkage with high stereoselectivity, a linker-equipped rhamnotriose derivative was glycosylated with ethyl 4-azido-3-O-benzyl-2-O-bromoacetyl-4,6-dideoxy-1-thio-beta-d-glucopyranoside. Further functionalization of the tetrasaccharide thus obtained, followed by deprotection, gave the target substance. 相似文献
77.
Chakrabarti R Srivastava PK Kundu K Khare RS Banerjee S 《Fish & shellfish immunology》2012,32(5):839-843
Immunostimulatory and growth promoting properties of Achyranthes aspera seeds were studied with larvae of common carp Cyprinus carpio. Four experimental diets were prepared using raw (D1) and alcohol (D2), petroleum ether (D3) and 50% aqueous alcohol (D4) extracts of A. aspera seeds. Diet without seed served as control (D5). Fish were fed with test/control diet for 30 days and then immunized with 10 μl of c-RBC. Blood samples were collected 7 days after immunization. Survival (93 ± 3%) of fish was significantly (P < 0.05) higher in D1 diet fed group compared to others. Highest specific growth rate was found in fish fed with diet D2. Significantly (P < 0.05) higher levels of serum protein and albumin were found in D1 and D3 compared to others. Highest serum globulin level was found in D1, which was followed by D3, D2, D4 and D5. Hemagglutination titer level was 5-18 folds higher in diet D3 fed fish compared to others. SGOT and SGPT levels were significantly (P < 0.05) higher in control group compared to the treated groups. Myeloperoxidase activity was significantly (P < 0.05) higher in D1 (2.513 ± 0.27 λ 450 nm) and D3 (2.38 ± 0.07 λ 450 nm) diets fed groups compared to others. The best performance of fish was found in raw A. aspera seeds incorporated diet fed group and the active constituents were identified as ecdysterone and two essential fatty acids linolenic acid and oleic acid. 相似文献
78.
Grillo AO Edwards KL Kashi RS Shipley KM Hu L Besman MJ Middaugh CR 《Biochemistry》2001,40(2):586-595
Aggregation of proteins is a major problem in their use as drugs and is also involved in a variety of pathological diseases. In this study, biophysical techniques were employed to investigate aggregate formation in the pharmaceutically important protein, recombinant human factor VIII (rhFVIII). Recombinant human factor VIII incubated in solution at 37 degrees C formed soluble aggregates as detected by molecular sieve chromatography and dynamic light scattering. This resulted in a corresponding loss of biological activity. Fluorescence and CD spectra of the thermally stressed rhFVIII samples did not, however, suggest significant differences in protein conformation. To identify conformational changes in rhFVIII that may be involved in rhFVIII aggregation, temperature and solutes were used to perturb the native structure of rhFVIII. Far-UV CD and FTIR studies of rhFVIII as a function of temperature revealed conformational changes corresponding to an increase in intermolecular beta-sheet content beginning at approximately 45 degrees C with significant aggregation observed above 60 degrees C. Fluorescence and DSC studies of rhFVIII also indicated conformational changes initiating between 45 and 50 degrees C. An increase in the exposure of hydrophobic surfaces was observed beginning at approximately 40 degrees C, as monitored by increased binding of the fluorescent probe, bis-anilinonaphthalene sulfonic acid (bis-ANS). Perturbation by various solutes produced several transitions prior to extensive unfolding of rhFVIII. In all cases, a common transition, characterized by an increase in the wavelength of the fluorescence emission maximum of rhFVIII from approximately 330 to 335 nm, was observed during thermal and solute perturbation of factor VIII. Moreover, this transition was correlated with an increased association of factor VIII upon incubation at 37 degrees C in the presence of various solutes. These results suggest that association of rhFVIII in solution was initiated by a small transition in the tertiary structure of the protein which produced a nucleating species that led to the formation of inactive soluble aggregates. 相似文献
79.
Nurit Nardi Galya Avidan Dvorah Daily Rina Zilkha-Falb Ari Barzilai 《Journal of neurochemistry》1997,68(2):750-759
Abstract: We analyzed biochemically and temporally the molecular events that occur in the programmed cell death of mouse cerebellar granule neurons deprived of high potassium levels. An hour after switching the neurons to a low extracellular K+ concentration ([K+]o), a significant part of the genomic DNA was already cleaved to high-molecular-weight fragments. This phenomenon was intensified with the progression of the death process. Addition of cycloheximide to the neurons 4 h after high [K+]o deprivation resulted in no cell loss and complete recovery of the damaged DNA. DNA margination and nuclear fragmentation as assessed by 4,6-diaminodiphenyl-2-phenylindole staining were observable in a few cells beginning ~4 h after the removal of high [K+]o and developed to nuclear condensation 4 h later. Six hours after high [K+]o deprivation, the DNA was fragmented into oligonucleosome-sized fragments. Within 6 h after removal of the extracellular K+, 50% of the neurons were committed to die and lost their ability to be rescued by readministration of 25 mM [K+]o. Similar to high [K+]o deprivation, inhibition of RNA or protein synthesis failed to halt neuronal degeneration of a similar percentage of cells 6 h after the onset of the death process. Mitochondrial function steadily decreased after [K+]o removal. An ~40% decrease in RNA and protein synthesis was detected by 6 h of [K+]o removal during the period of cell death commitment; rates continued to decline gradually thereafter. The temporal characteristics of the DNA damage and recovery, DNA cleavage to oligonucleosome-sized fragments, and the reduction in mitochondrial activity—events that occurred within the critical time—may indicate that these processes have an important part in the mechanism that committed the neurons to die. 相似文献
80.
Zakhartsev M Lucassen M Kulishova L Deigweiher K Smirnova YA Zinov'eva RD Mugue N Baklushinskaya I Pörtner HO Ozernyuk ND 《The FEBS journal》2007,274(6):1503-1513
Temperature acclimation in poikilotherms entails metabolic rearrangements provided by variations in enzyme properties. However, in most cases the underlying molecular mechanisms that result in structural changes in the enzymes are obscure. This study reports that acclimation to low (5 degrees C) and high (18 degrees C) temperatures leads to differential expression of alternative forms of the LDH-A gene in white skeletal muscle of weatherfish, Misgurnus fossilis. Two isoforms of LDH-A mRNA were isolated and characterized: a short isoform (= 1332 bp) and a long isoform ( = 1550 bp), which both have 5'-UTRs and ORFs of the same length (333 amino acid residues), but differ in the length of the 3'-UTR. In addition, these two mRNAs have 44 nucleotide point mismatches of an irregular pattern along the complete sequence, resulting in three amino acid mismatches (Gly214Val; Val304Ile and Asp312Glu) between protein products from the short and long mRNA forms, correspondingly LDH-A(alpha) and LDH-A(beta) subunits. It is expected that the beta-subunit is more aliphatic due to the properties of the mismatched amino acids and therefore sterically more restricted. According to molecular modelling of M. fossilis LDH-A, the Val304Ile mismatch is located in the subunit contact area of the tetramer, whereas the remaining two mismatches surround the contact area; this is expected to manifest in the kinetic and thermodynamic properties of the assembled tetramer. In warm-acclimated fish the relative expression between alpha and beta isoforms of the LDH-A mRNA is around 5 : 1, whereas in cold-acclimated fish expression of is reduced almost to zero. This indicates that at low temperature the pool of total tetrameric LDH-A is more homogeneous in terms of alpha/beta-subunit composition. The temperature acclimation pattern of proportional pooling of subunits with different kinetic and thermodynamic properties of the tetrameric enzyme may result in fine-tuning of the properties of skeletal LDH-A, which is in line with previously observed kinetic and thermodynamic differences between 'cold' and 'warm' LDH-A purified from weatherfish. Also, an irregular pattern of nucleotide mismatches indicates that these mRNAs are the products of two independently evolving genes, i.e. paralogues. Karyotype analysis has confirmed that the experimental population of M. fossilis is tetraploid (2n = 100), therefore gene duplication, possibly through tetraploidy, may contribute to the adaptability towards temperature variation. 相似文献