首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17164篇
  免费   1417篇
  国内免费   8篇
  18589篇
  2024年   21篇
  2023年   130篇
  2022年   305篇
  2021年   533篇
  2020年   309篇
  2019年   399篇
  2018年   457篇
  2017年   352篇
  2016年   662篇
  2015年   1073篇
  2014年   1159篇
  2013年   1344篇
  2012年   1627篇
  2011年   1456篇
  2010年   929篇
  2009年   773篇
  2008年   1019篇
  2007年   995篇
  2006年   886篇
  2005年   807篇
  2004年   772篇
  2003年   617篇
  2002年   617篇
  2001年   105篇
  2000年   90篇
  1999年   110篇
  1998年   125篇
  1997年   96篇
  1996年   90篇
  1995年   65篇
  1994年   60篇
  1993年   49篇
  1992年   48篇
  1991年   38篇
  1990年   37篇
  1989年   48篇
  1988年   38篇
  1987年   24篇
  1986年   20篇
  1985年   28篇
  1984年   30篇
  1983年   22篇
  1982年   19篇
  1981年   18篇
  1980年   21篇
  1979年   19篇
  1978年   13篇
  1976年   17篇
  1974年   13篇
  1968年   10篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
102.
103.
Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer-dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer-dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes.  相似文献   
104.
We reported previously that simulating sleep apnea by exposing rats to eucapnic intermittent hypoxia (E-IH) causes endothelin-dependent hypertension and increases constrictor sensitivity to endothelin-1 (ET-1). In addition, augmented ET-1-induced constriction in small mesenteric arteries (sMA) is mediated by increased Ca(2+) sensitization independent of Rho-associated kinase. We hypothesized that exposing rats to E-IH augments ET-1-mediated vasoconstriction by increasing protein kinase C (PKC)-dependent Ca(2+) sensitization. In sMA, the nonselective PKC inhibitor GF-109203x (3 microM) significantly inhibited ET-1-stimulated constriction in E-IH arteries but did not affect ET-1-stimulated constriction in sham arteries. Phospholipase C inhibitor U-73122 (1 microM) also inhibited constriction by ET-1 in E-IH but not sham sMA. In contrast, the classical PKC (cPKC) inhibitor G?-6976 (1 microM) had no effect on ET-1-mediated vasoconstriction in either group, but a PKCdelta-selective inhibitor (rottlerin, 3 microM) significantly decreased ET-1-mediated constriction in E-IH but not in sham sMA. ET-1 increased PKCdelta phosphorylation in E-IH but not sham sMA. In contrast, ET-1 constriction in thoracic aorta from both sham and E-IH rats was inhibited by G?-6976 but not by rottlerin. These observations support our hypothesis that E-IH exposure significantly increases ET-1-mediated constriction of sMA through PKCdelta activation and modestly augments ET-1 contraction in thoracic aorta through activation of one or more cPKC isoforms. Therefore, upregulation of a PKC pathway may contribute to elevated ET-1-dependent vascular resistance in this model of hypertension.  相似文献   
105.

Background

The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic–ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia–ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available.

Methods

The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia–ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina.

Results and conclusions

Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family.

General significance

We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia–ischemia insults and other disorders of the CNS.This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.  相似文献   
106.
Kramer DJ  Gauthier L  Yankulov K 《BioTechniques》2002,32(5):1036, 1038, 1040 passim
The minichromosome maintenance assay isfrequently used to characterize mutations genetically that affect the initiation of DNA replication or to decipherfunctional components in autonomously replicating sequences. The assay determines minichromosome loss by measuring the percentage of plasmid-containing cells in cultures after a period of growth in nonselective medium. Here we analyze data acquisition errors that contribute to the low accuracy of the routine versions of the assay. We propose modifications that eliminate errors in the acquisition of two variables and significantly improve the accuracy of the assay.  相似文献   
107.
Microbial ecology within oligotrophic marine sediment is poorly understood, yet is critical for understanding geochemical cycles. Here, 16S rRNA sequences from RNA and DNA inform the structure of active and total microbial communities in oligotrophic sediment on the western flank of the Mid-Atlantic Ridge. Sequences identified as Bacillariophyta chloroplast were detected within DNA, but undetectable within RNA, suggesting preservation in 5.6-million-year-old sediment. Statistical analysis revealed that RNA-based microbial populations correlated significantly with nitrogen concentrations, whereas DNA-based populations did not correspond to measured geochemical analytes. Bioenergetic calculations determined which metabolisms could yield energy in situ, and found that denitrification, nitrification, and nitrogen fixation were all favorable. A metagenome was produced from one sample, and included genes mediating nitrogen redox processes. Nitrogen respiration by active bacteria is an important metabolic strategy in North Pond sediments, and could be widespread in the oligotrophic sedimentary biosphere.  相似文献   
108.
109.

Background

Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood.

Methodology/Principal Findings

Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K+, Na+), but is enhanced by divalent cations (Mg2+, Ca2+), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution.

Conclusions/Significance

These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.  相似文献   
110.
Searching for proteins in platelets that can interact with the N-terminal SH3 domain of CrkL (using a combination of a pull-down assay followed by mass spectrometry), we have found that human platelets express an ADP-ribosylation factor (Arf)-specific GTPase-activating protein (GAP), ASAP1, as a CrkL-binding protein. In spreading platelets, most endogenous ASAP1 is localized at peripheral focal adhesions. To determine the physiologic significance of the CrkL-ASAP1 association, we overexpressed CrkL, ASAP1, or both in combination in COS7 cells. Unlike endogenous ASAP1 in platelets, overexpressed ASAP1 showed diffuse cytoplasmic distribution. However, when co-expressed with wild-type CrkL, both endogenous and expressed ASAP1 accumulated at CrkL-induced focal adhesions. An SH2-mutated CrkL, which cannot localize at focal adhesions, failed to recruit ASAP1 into focal adhesions. Thus, CrkL appears to be a lynchpin between ASAP1 and peripheral focal adhesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号