首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   18篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   18篇
  2014年   19篇
  2013年   23篇
  2012年   33篇
  2011年   23篇
  2010年   14篇
  2009年   17篇
  2008年   19篇
  2007年   18篇
  2006年   18篇
  2005年   15篇
  2004年   12篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1986年   1篇
  1982年   2篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
31.
The development of metastasis is a complex, multistep process that remains poorly defined. To identify proteins involved in the colonization phase of the metastatic process, we compared the proteome of tumors derived from inoculation of a panel of isogenic human cancer cell lines with different metastatic capabilities into the mammary fat pad of immunodeficient mice. Using a protein standard generated by SILAC-labeling, a total of 675 proteins were identified and 30 were differentially expressed between at least two of the tumors. The protein standard contained the proteomes of seven cell lines from multiple histogenic origins and displayed superior features compared to standard super-SILAC. The expression of some proteins correlated with metastatic capabilities, such as myosin-9 (nonmuscle myosin II A) and L-lactate dehydrogenase A, while the expression of elongation factor tu correlated inversely to metastatic capabilities. The expression of these proteins was biochemically validated, and expression of myosin-9 in clinical breast cancer samples was further shown to be altered in primary tumors versus corresponding lymph node metastasis. Our study demonstrates an improved strategy for quantitative comparison of an unlimited number of tumor tissues, and provides novel insights into key proteins associated with the colonization phase of metastasis formation.  相似文献   
32.
Murine pregnancy-associated plasma protein-A (PAPP-A) cDNA encoding a 1545 amino-acid protein has been cloned. We have also identified and cloned cDNA that encodes a novel variant of PAPP-A, PAPP-Ai, carrying a 29-residue highly basic insert. The point of insertion corresponds to a junction between two exons in the human PAPP-A gene. The human intron flanked by these exons does not encode a homologous corresponding insert, which is unique to the mouse. The overall sequence identity between murine and human PAPP-A is 91%, and murine PAPP-A contains sequence motifs previously described in the sequence of human PAPP-A. Through expression in mammalian cells, we show that murine PAPP-A and PAPP-Ai are active metalloproteinases, both capable of cleaving insulin-like growth factor binding protein (IGFBP)-4 and -5. Cleavage of IGFBP-4 is dramatically enhanced by the addition of IGF, whereas cleavage of IGFBP-5 is slightly inhibited by IGF, as previously established with human PAPP-A. Surprisingly, however, quantitative analyses demonstrate that the murine PAPP-Ai cleaves IGFBP-4 very slowly compared to PAPP-A, even though its ability to cleave IGFBP-5 is unaffected by the presence of the insert. By RT-PCR analysis, we find that both variants are expressed in several tissues. The level of mRNA in the murine placenta does not exceed the levels of other tissues analyzed. Furthermore, the IGFBP-4-proteolytic activity of murine pregnancy serum is not elevated. This is in striking contrast to the increase seen in human pregnancy serum, and the expression of PAPP-A in the human placenta, which exceeds other tissues at least 250-fold. Interestingly, the position of the insert of PAPP-Ai, within the proteolytic domain, lies in close proximity to the cysteine residue, which in human PAPP-A forms a disulfide bond with the proform of eosinophil major basic protein (proMBP). ProMBP functions as a proteinase inhibitor in the PAPP-A-proMBP complex, but whether any mechanistic parallel on regulation of proteolytic activity can be drawn between the insert of PAPP-Ai and the linkage to proMBP is not known. Importantly, these data support the development of the mouse as a model organism for the study of PAPP-A, which must take into account the differences between the mouse and the human.  相似文献   
33.
34.
The major peroxidase of barley grain (BP 1) has enzymatic and spectroscopic properties that are very differeant from those of other known plant peroxidases (EC 1.11.1.7) and can therefore contribute to the understanding of the many physiological functions ascribed to these enzymes. To study the structure-function relationships of this unique model peroxidase, large-scale and Jaboratory-scale purifications have been developed. The two batches of pure BP 1 obtained were identical in their enzymatic and spectral properties, and confirmed that BP 1 is different from the prototypical horseradish peroxidase isoenzyme C (HRP C). However, when measuring the specific activity of BP 1 at pH 4.0 in the presence of 1 m M CaCl2, the enzyme was as competent as HRP C at neutral pH towards a variety of substrates (m M mg−1 min−1): coniferyl alcohol (930±48), caffeic acid (795±53), ABTS (2,2'-azino-di-[3-ethyl-benzothiazoline-(6)-sulfonic acid]) (840±47), ferulic acid (415±20), p -coumaric acid (325±12), and guaiacol (58±3). The absorption spectrum of BP 1 is blue-shifted compared to that of HRP C with a Soret maximum of 399–402 nm, depending on pH. The prosthetic group was shown to be iron-protoporphyrin IX, which is characteristic of plant peroxidases. BP 1 is stable from pH 3 to 11, indicating that its unusual spectral characteristics do not result from enzyme instability. The thermostability is also normal with a melting temperature of 75°C at pH 6.6, and 67°C at pH 4.0 and 8.3. It is clear that the unusual properties of BP 1 are genuine, and reflect a novel regulation of plant peroxidase function.  相似文献   
35.
Conifer trees are routinely manipulated hormonally to increase flowering, branching, or adjust crown shape for production purposes. This survey of internal cytokinin levels provides a background for such treatments in Abies nordmanniana, a tree of great economic interest. Reference points in the crown and root system were sampled destructively in 4- and 6-year-old trees and analyzed for a range of cytokinins by LC-MS/MS. No seasonal patterns were detected in the root samples, and a major portion of cytokinin was in conjugated forms. Dramatic and consistent seasonal changes occurred in the crown, at levels 17–65 times higher than in the root. Predominant among crown cytokinins was ZR, except in the needles where IPR was also prominent. Within the crown, cytokinin profiles in different organs differed consistently. The leader bud showed a pronounced mid-June minimum, and a maximum later in summer. Subapical buds showed the same June minimum but peaked in mid autumn at a much lower level. Maxima in these buds were preceded by peaks in the subapical stem. Parallel patterns were observed in homologous tissues on branches.This pattern is consistent with two surges beginning in the uppermost stem tissues leading to subsequent accumulation or stimulated production within the buds. Strong differential hormonal profiles between adjacent buds with different fates agree with recent evidence of localized cytokinin production. The data suggest a reduced role of root-derived cytokinins in crown development. Practical cytokinin treatments for crown-shape regulation require close attention to dosage as well as precise timing and positioning.  相似文献   
36.
The spread of cancer cells from a primary tumor to form metastasis at distant sites is a complex multistep process. The cancer cell proteins and plasma membrane proteins in particular involved in this process are poorly defined, and a study of the very early events of the metastatic process using clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice; but although one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane purification and comparative quantitative LC-MS/MS proteomics identified 13 membrane proteins that were expressed at higher levels and three that were underexpressed in the metastatic compared with the non-metastatic cell line from a total of 1919 identified protein entries. Among the proteins were ecto-5′-nucleotidase (CD73), NDRG1, integrin β1, CD44, CD74, and major histocompatibility complex class II proteins. The altered expression levels of proteins identified by LC-MS/MS were validated using flow cytometry, Western blotting, and immunocyto- and immunohistochemistry. Analysis of clinical breast cancer biopsies demonstrated a significant correlation between high ecto-5′-nucleotidase and integrin β1 expression and poor outcome, measured as tumor spread or distant recurrence within a 10-year follow-up. Further the tissue analysis suggested that NDRG1, HLA-DRα, HLA-DRβ, and CD74 were associated with the ER/PR phenotype represented by the two cell lines. The study demonstrates a quantitative and comparative proteomics strategy to identify clinically relevant key molecules in the early events of metastasis, some of which may prove to be potential targets for cancer therapy.Breast cancer is the most common malignant disease among women in Western countries, occurring in approximately one in 11 women (1). In this disease, malignant cells often disseminate to regional lymph nodes and establish distant metastases, preferentially in the bone, lung, and liver, resulting in poor outcome and high mortality (2, 3).Metastases are established through a complex set of events that is yet not fully understood but requires detachment of single cells from the primary tumor, penetration of the tissue matrix, and migration of these cells to distant locations where they induce angiogenesis and undergo expansive growth (4). Some disseminated cancer cells seem to be capable of maintaining dormancy in distant organs without establishing metastases but may suddenly become activated many years after resection of the primary tumor (5). The dormancy may be caused by environmental signals, either lack of those inducing differentiation or the presence of signals stimulating growth arrest. Cellular factors and changes in the microenvironment, such as inflammation or a change in hormonal status, might eventually induce proliferation, differentiation, and subsequent metastatic growth, whereas other disseminated cancer cells remain dormant for a lifetime (6).Traditional models of metastasis suggest that a subpopulation of cells in the primary tumor acquire metastatic capacity late in tumorigenesis, but gene expression profiles and cellular studies have recently provided evidence for a possible alternative model that suggests the metastatic capacity is acquired early in tumorigenesis (7). Stem cell populations have been identified in a range of hematopoietic and solid tumors and might represent the cells of origin for these tumors but might also be responsible for metastasis (8). Although a preserved genetic signature between the primary tumor and the metastasis has been found, other studies provide evidence of a gradual acquisition of genomic changes because distant metastases may not uniformly share mutations and often differ extensively from the primary tumor, reflecting the extent of genetic instability of breast cancer (9, 10). Only few studies provide proteomic characteristics of metastatic versus primary tumor of breast cancer because of the difficulties of obtaining high quality human tumor samples with full clinical histories and the absence of directly relevant in vitro assays (11, 12).The two isogenic cell lines M-4A4 and NM-2C5, which were derived from the MDA-MB-435 cell line and originated from a highly aggressive human invasive ductal carcinoma, provide an interesting model of the metastatic process (13). M-4A4 and NM-2C5, when inoculated into the mammary fat pad of nude mice, showed equal tumorigeneity, but although M-4A4 established easily detectable metastases restricted to lymph nodes and lungs, NM-2C5 cells disseminated to distal organs, but the cells remained dormant and did not establish metastasis (14). There is an ongoing debate on whether the parent cell line MDA-MB-435 can be defined as a breast cancer cell line because it, along with breast- and epithelia-specific markers, also expresses melanoma-specific genes (15). However, MDA-MB-435 can be induced to express breast differentiation-specific proteins and secrete milk lipids as observed in other well established breast cancer cell lines and has therefore been considered as an excellent model of a highly malignant and dedifferentiated breast cancer (16). Regardless of this debate, our model system remains valuable in the context of cancer metastasis, but the results should, as always when using cell line models, be supported by studies of clinically relevant human tissue specimens.M-4A4 and NM-2C5 have been extensively compared using gene expression analysis identifying a panel of differentially expressed genes (13, 1720). However, because the proteome is so much more complex than the genome, similar studies at the protein level with special focus on plasma membrane proteins may add valuable biological insight and identify cell surface molecules that might be targeted with drugs or antibodies to inhibit the metastatic process.Comparative quantitative proteomics using stable isotope labeling with amino acids in cell culture (SILAC)1 and LC-MS/MS allows a study of proteins with quantitatively different expression levels on metastasizing versus non-metastasizing cells. We used this technique to identify a panel of plasma membrane proteins showing altered expression in cells capable of forming metastasis. Validation studies at the protein and RNA expression level of the cell lines indicate that several of the identified proteins may be important for establishing metastasis in distant organs and thus have potential in target-specific therapy. Therefore, to further evaluate the clinical relevance of a selected number of the candidates identified by our analysis, their expression levels were evaluated in a panel of primary breast cancer biopsies and corresponding axillary lymph node metastasis from patients with known clinical outcomes. The results demonstrated the power of this systematic stepwise strategy for identifying targets of potential clinical value.  相似文献   
37.
Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes.  相似文献   
38.
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.  相似文献   
39.
The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号