首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   108篇
  2022年   12篇
  2021年   19篇
  2020年   12篇
  2019年   6篇
  2018年   25篇
  2017年   9篇
  2016年   31篇
  2015年   51篇
  2014年   51篇
  2013年   58篇
  2012年   81篇
  2011年   78篇
  2010年   50篇
  2009年   48篇
  2008年   62篇
  2007年   60篇
  2006年   61篇
  2005年   53篇
  2004年   49篇
  2003年   44篇
  2002年   38篇
  2001年   45篇
  2000年   27篇
  1999年   22篇
  1998年   16篇
  1997年   10篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   17篇
  1991年   17篇
  1990年   26篇
  1989年   23篇
  1988年   19篇
  1987年   10篇
  1986年   10篇
  1985年   14篇
  1984年   15篇
  1983年   8篇
  1982年   12篇
  1980年   5篇
  1979年   12篇
  1978年   8篇
  1977年   12篇
  1974年   6篇
  1973年   6篇
  1971年   7篇
  1970年   8篇
  1968年   7篇
  1966年   4篇
排序方式: 共有1335条查询结果,搜索用时 15 毫秒
81.
82.
The genomic analysis of Streptococcus pneumoniae strains identified the Pneumococcal adherence and virulence factor B (PavB), whose repetitive sequences, designated Streptococcal Surface REpeats (SSURE), interact with human fibronectin. Here, we showed the gene in all tested pneumococci and identified that the observed differences in the molecular mass of PavB rely on the number of repeats, ranging from five to nine SSURE. PavB interacted with fibronectin and plasminogen in a dose‐dependent manner as shown by using various SSURE peptides. In addition, we identified PavB as colonization factor. Mice infected intranasally with ΔpavB pneumococci showed significantly increased survival times compared with wild‐type bacteria. Importantly, the pavB‐mutant showed a delay in transmigration to the lungs as observed in real‐time using bioluminescent pneumococci and decreased colonization rates in a nasopharyngeal carriage model. In co‐infection experiments the wild‐type out‐competed the pavB‐mutant and infections of epithelial cells demonstrated that PavB contributes to adherence to host cell. Blocking experiments suggested a function of PavB as adhesin, which was confirmed by direct binding of SSURE peptides to host cells. Finally, PavB may represent a new vaccine candidate as SSURE peptides reacted with human sera. Taken together, PavB is a surface‐exposed adhesin, which contributes to pneumococcal colonization and infections of the respiratory airways.  相似文献   
83.
Knowledge of the microbial consortia participating in the generation of biogas, especially in methane formation, is still limited. To overcome this limitation, the methanogenic archaeal communities in six full-scale biogas plants supplied with different liquid manures and renewable raw materials as substrates were analyzed by a polyphasic approach. Fluorescence in situ hybridization (FISH) was carried out to quantify the methanogenic Archaea in the reactor samples. In addition, quantitative real-time PCR (Q-PCR) was used to support and complete the FISH analysis. Five of the six biogas reactors were dominated by hydrogenotrophic Methanomicrobiales. The average values were between 60 to 63% of archaeal cell counts (FISH) and 61 to 99% of archaeal 16S rRNA gene copies (Q-PCR). Within this order, Methanoculleus was found to be the predominant genus as determined by amplified rRNA gene restriction analysis. The aceticlastic family Methanosaetaceae was determined to be the dominant methanogenic group in only one biogas reactor, with average values for Q-PCR and FISH between 64% and 72%. Additionally, in three biogas reactors hitherto uncharacterized but potentially methanogenic species were detected. They showed closest accordance with nucleotide sequences of the hitherto unclassified CA-11 (85%) and ARC-I (98%) clusters. These results point to hydrogenotrophic methanogenesis as a predominant pathway for methane synthesis in five of the six analyzed biogas plants. In addition, a correlation between the absence of Methanosaetaceae in the biogas reactors and high concentrations of total ammonia (sum of NH3 and NH4+) was observed.During the last decade the production of biogas from organic materials and residues has increased continuously in order to reduce the greenhouse gas emission resulting from the use of fossil energy sources. The energy-bearing substance of biogas is methane, which is produced as an end product of microbial anaerobic degradation of organic substrates, such as energy crops like maize, grains, grasses, or beets. Research for optimization of biogas production from renewable materials was initially focused on the evaluation of substrate eligibility and on the development and optimization of technical systems. However, biogas formation primarily depends on the structure and activity of the microbial community (28).The key microorganisms in the biogas formation process are the methane-generating microorganisms (methanogens). The capacity for methanogenesis is limited to members of the domain Archaea and, within this domain, on the phylum Euryarchaeota. With respect to the main metabolic precursors used, methanogens are usually divided into two groups: the aceticlastic methanogens that strictly metabolize acetate and the hydrogenotrophic methanogens that use H2 or formate as an electron donor and CO2 as a carbon source for their metabolism. Besides these major groups, certain methanogens are also able to convert methyl groups, methylamines, or methanol to methane (23, 40). The substrates for the methanogens are provided by several physiological groups of bacteria which degrade organic matter, sometimes in close syntrophic interaction with the methanogens (1).Several studies on the microbial diversity present in lab-scale biogas reactors supplied with renewable raw material (7, 57) have been recently published. However, analyses under laboratory conditions do not necessarily reflect conditions in full-scale reactors (35). Therefore, further research on the methanogenic community in full-scale biogas reactors is crucial.Generally, studies regarding the microbial community structure in full-scale biogas reactors have focused on different systems for wastewater treatment or classical biogas plants based on manure digestion (32, 38, 43). In most systems, approximately 70% of the carbon fixed in methane was derived from acetate. Only minor amounts, up to approximately 30%, were deduced from CO2 (1, 42). Together with the presence of huge assemblages of Methanosarcina sp., it was assumed by some authors that aceticlastic methanogenesis was the predominant pathway for methane formation. Moreover, as shown by other studies, the relative contribution of H2/CO2 versus acetate as metabolic precursors for methanogens can be quite different in other anaerobic environments (10, 33, 37). However, the methanogenic microfloras in full-scale biogas reactors supplied with energy crops as a primary or sole substrate have rarely been studied (35, 37, 45).The aim of this study was to gain insight into the diversity of methane-producing Archaea in six full-scale biogas plants supplied with renewable raw material and different types of liquid manure as substrates. Therefore, a polyphasic approach with three different culture-independent techniques (fluorescence in situ hybridization [FISH], quantitative PCR [Q-PCR], and 16S rRNA gene analysis) to analyze methanogen diversity was carried out to overcome the known limitations of each single approach (15, 46). To analyze potential effects of different process parameters on the methanogenic archaeal community, the reactor performances were correlated with the apparent archaeal diversity.  相似文献   
84.

Background

Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals.

Methods and Results

In 10 healthy normotensive subjects (3 f/7 m), (age 37±11 yrs), (BMI 24±3 kg/m2) direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA) were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT) technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index), was within the normal range (1,9–3,3) and MSNA was as expected for age and gender (13–44 burst/minute). RH-PAT index was inversely related to MSNA (r = −0.8, p = 0.005). RH-PAT index and MSNA were reciprocally related to time (h/week) spent on physical activity (p = 0.005 and p = 0.006 respectively) and platelet concentration (PLT) (p = 0.02 and p = 0.004 respectively).

Conclusions

Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular health.  相似文献   
85.
86.
The state of prediabetes is characterized by an increase in insulin resistance and a decrease in pancreatic beta cell function. The prestage of type 2 diabetes mellitus can be identified by an impaired glucose tolerance and/or by an impaired fasting blood sugar. Apart from weight loss and increase in physical activity, the development of type 2 diabetes mellitus can also be prevented by dietary changes. A low-fat diet with a dietary fiber intake of more than 30g/d was shown to represent an effective preventive approach. A high-fiber diet has many positive effects on the physical health status. In addition to positive effects in the gastrointestinal tract it has an obvious potential to support weight reduction and to improve disturbances of carbohydrate and fat metabolism. At the present state of knowledge, insoluble dietary fibers as found in whole grain cereal products are considered to be especially effective in the prevention of type 2 diabetes mellitus. A high intake of fruits and vegetables as well as pulses also exerts health-promoting properties. A high-fiber diet also plays an important role in the prevention of obesity and coronary heart diseases.  相似文献   
87.
Bergmann A 《Cell》2007,131(6):1032-1034
Autophagy has been associated with both cell survival and cell death, but the role of autophagy in cell death has been controversial. In this issue, Berry and Baehrecke (2007) report that autophagy is involved in physiological cell death during Drosophila development and is controlled by similar mechanisms as those that control its function in cell survival.  相似文献   
88.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   
89.
To determine the influence of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells on the development of drug resistance mutations in the HIV-1 protease, we analyzed protease sequences from viruses from a human leukocyte antigen class I (HLA class I)-typed cohort of 94 HIV-1-positive individuals. In univariate statistical analyses (Fisher's exact test), minor and major drug resistance mutations as well as drug-associated polymorphisms showed associations with HLA class I alleles. All correlations with P values of 0.05 or less were considered to be relevant without corrections for multiple tests. A subset of these observed correlations was experimentally validated by enzyme-linked immunospot assays, allowing the definition of 10 new epitopes recognized by CD8+ T cells from patients with the appropriate HLA class I type. Several drug resistance-associated mutations in the protease acted as escape mutations; however, cells from many patients were still able to generate CD8+ T cells targeting the escape mutants. This result presumably indicates the usage of different T-cell receptors by CD8+ T cells targeting these epitopes in these patients. Our results support a fundamental role for HLA class I-restricted immune responses in shaping the sequence of the HIV-1 protease in vivo. This role may have important clinical implications both for the understanding of drug resistance pathways and for the design of therapeutic vaccines targeting drug-resistant HIV-1.  相似文献   
90.
Translation elongation factor eEF1A, formerly known as EF-1 alpha, exists as two variant forms; eEF1A1, which is almost ubiquitously expressed, and eEF1A2, whose expression is restricted to muscle and brain at the level of whole tissues. Expression analysis of these genes has been complicated by a general lack of availability of antibodies that specifically recognize each variant form. Wasted mice (wst/wst) have a 15.8-kilobase deletion that abolishes activity of eEF1A2, but before this study it was unknown whether the deletion also affected neighboring genes. We have generated a panel of anti-peptide antibodies and used them to show that eEF1A2 is expressed at high levels in specific cell types in tissues previously thought not to express this variant, such as pancreatic islet cells and enteroendocrine cells in colon crypts. Expression of eEF1A1 and eEF1A2 is shown to be generally mutually exclusive, and we relate the expression pattern of eEF1A2 to the phenotype seen in wasted mice. We then carried out a series of transgenic experiments to establish whether the expression of other genes is affected by the deletion in wasted mice. We show that aspects of the phenotype such as motor neuron degeneration relate precisely to the relative expression of eEF1A1 and eEF1A2, whereas the immune system abnormalities are likely to result from a stress response. We conclude that loss of eEF1A2 function is solely responsible for the abnormalities seen in these mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号