首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   11篇
  284篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   15篇
  2012年   17篇
  2011年   13篇
  2010年   6篇
  2009年   6篇
  2008年   20篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   20篇
  2003年   17篇
  2002年   6篇
  2001年   10篇
  2000年   7篇
  1999年   12篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   9篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
71.
F1-ATPase is a rotary molecular motor in which the γ-subunit rotates against the α3β3 cylinder. The unitary γ-rotation is a 120° step comprising 80 and 40° substeps, each of these initiated by ATP binding and ADP release and by ATP hydrolysis and inorganic phosphate release, respectively. In our previous study on γ-rotation at low temperatures, a highly temperature-sensitive (TS) reaction step of F1-ATPase from thermophilic Bacillus PS3 was found below 9 °C as an intervening pause before the 80° substep at the same angle for ATP binding and ADP release. However, it remains unclear as to which reaction step the TS reaction corresponds. In this study, we found that the mutant F1(βE190D) from thermophilic Bacillus PS3 showed a clear pause of the TS reaction below 18 °C. In an attempt to identify the catalytic state of the TS reaction, the rotation of the hybrid F1, carrying a single copy of βE190D, was observed at 18 °C. The hybrid F1 showed a pause of the TS reaction at the same angle as for the ATP binding of the incorporated βE190D, although kinetic analysis revealed that the TS reaction is not the ATP binding step. These findings suggest that the TS reaction is a structural rearrangement of β before or after ATP binding.F1-ATPase (F1)2 is an ATP-driven rotary motor protein. The subunit composition of the bacterial F1-ATPase is α3β3γδϵ, and the minimum complex of F1-ATPase as a rotary motor is α3β3γ subcomplex. This motor protein forms the FoF1-ATP synthase complex by binding to another rotary motor, namely, Fo, which is driven by the proton flux resulting from the proton motive force across the membranes (14). Under physiological conditions, where the proton motive force is sufficiently large, Fo forcibly rotates F1-ATPase in the reverse direction of F1-ATPase, leading the reverse reaction of ATP hydrolysis, i.e. ATP synthesis from ADP and inorganic phosphate (Pi). When the proton motive force diminishes or F1 is isolated from Fo, F1-ATPase hydrolyzes ATP to rotate the γ-subunit against the α3β3 stator ring in the counterclockwise direction as viewed from the Fo side (5). The catalytic sites are located at the interface of the α- and β-subunits, predominantly on the β-subunit (6). Each β-subunit carries out a single turnover of ATP hydrolysis during the γ-rotation of 360° following the common catalytic reaction pathway, whereas they are 120° different in the catalytic phase. In this manner, the three β-subunits undergo different reaction steps of ATP hydrolysis upon each rotational step. The rotary motion of the γ-subunit has been demonstrated by biochemical (7) and spectroscopic methods (8) and directly proved in single-molecule observation studies (5).Since the establishment of the single-molecule rotation assay, the chemomechanical coupling scheme of F1 has been studied extensively by resolving the rotation into discrete steps. The stepping rotation was first observed under an ATP-limiting condition where F1 makes discrete 120° steps upon ATP binding (9). Then, high speed imaging of the rotation with a small probe of low friction was performed, which revealed that the 120° step comprises 80 and 40° substeps, each initiated by ATP binding, and two unknown consecutive reactions, respectively (10). This finding necessitated the identification of the two reactions that trigger the 40° substep. Hence, the rotation assay was performed using a mutant, namely F1(βE190D), and a slowly hydrolyzed ATP analog, namely ATPγS (11). Glutamate 190 of the β-subunit of F1, derived from thermophilic Bacillus PS3 and the corresponding glutamates from other F1-ATPases (Glu-181 of F1 from Escherichia coli and Glu-188 of F1 from bovine mitochondria), has been identified as one of the most critical catalytic residues for ATP hydrolysis (6, 1215). When this glutamate was substituted with aspartic acid, which has a shorter side chain than that of glutamate, the ATP cleavage step of F1 was drastically slowed. In the rotation assay, this mutant showed a distinct long pause before the 40° substep. ATPγS also caused a long pause before the 40° substep. These observations established that the 40° substep is initiated by hydrolysis. Accordingly, the pause angles before the 80 and 40° substeps are referred to as to the binding angle and the catalytic angle, respectively. Then, the rotation assay was performed in the presence of a high amount of Pi in the solution. It was shown that Pi rebinding caused the long pause at the catalytic angle, suggesting that Pi is released before the 40° substep (16).However, the reaction scheme of F1 cannot be established by simply assigning each reaction step to either the binding angle or the catalytic angle, because each reaction step must be assigned to one of the three binding or catalytic angles when considering the 360° cyclic reaction scheme of each β-subunit. Direct information about the timing of ADP release was obtained by simultaneous imaging of fluorescently labeled nucleotides and γ rotation, which showed that each β retains ADP until the γ rotates 240° after binding of the nucleotide as ATP and releases ADP between 240 and 320° (16, 17). Another powerful approach is the use of a hybrid F1 carrying a mutant β that causes a characteristic pause during the rotation. In a previous study, the hybrid F1 carrying a single copy of β(E190D), α3β2β(E190D)γ, showed a distinct pause caused by the slow hydrolysis of β(E190D) at +200° from the ATP binding angle of the mutant β (18). From this observation, it was confirmed that each β executes the chemical cleavage of the bound ATP at +200° from the angle where the ATP binds to β. The asymmetric feature of the pause of the hybrid F1 was also utilized in other experiments as a marker in the rotational trajectory to correlate the rotational angle and the conformational state of β (19) or to determine the state of F1 in the crystal structures as the pausing state at catalytic angle (20).Recently, we have found a new reaction intermediate of F1 rotation as a clear intervening pause before the 80° substep in the rotation assay below 9 °C (21). Furuike et al. (22) also observed the TS reaction in a high speed imaging experiment. The rate constant of this reaction was remarkably sensitive to temperature, giving a Q10 factor around 19. When ADP was added to solution, the pause before the 80° substep was prolonged, whereas the solution Pi caused a longer pause before the 40° substep (21). Although this result can be explained by assuming that the temperature-sensitive (TS) reaction is ADP release, it was not decisive for the identification of the TS reaction.In this study, we found that the mutant F1(βE190D) also exhibits the distinct pause of the TS reaction but at a higher temperature than for the wild-type F1, i.e. at 18 °C. This feature was advantageous in identifying the angle position of the TS reaction in the catalytic cycle for each β-subunit coupled with the 360° rotation. Taking advantage of the feature of the hybrid F1, we analyzed the rotational behavior of the hybrid F1 at 18 °C in order to assign the angle position of the TS reaction in the catalytic cycle of the 360° rotation, and we have shown that the TS reaction is not directly involved in the ADP release but in some conformational rearrangement before or after ATP binding step.  相似文献   
72.
73.
The cell lines designated JHOS-2, JHOC-5 and JHOC-6 were established from epithelial ovarian carcinomas. JHOS-2 was established from a serous adenocarcinoma of a 45-year-old Japanese woman, JHOC-5 from a recurrent tumor of a clear cell adenocarcinoma of a 47-year-old Japanese woman and JHOC-6 from a tumor of a clear cell adenocarcinoma of a 43-year-old Japanese woman. These cell lines have grown well and serial passages were successively carried out more than 20 times. The monolayer cultured cells revealed neoplastic and pleomorphic features, and grew in multilayers. Electron micrographs revealed epithelial origins that had desmosomes and tonofilaments.  相似文献   
74.
Human renal cell carcinoma (RCC) has been characterized by remarkable changes in ganglioside composition. TOS1 cells, typical of metastatic RCC, are characterized by predominance of GM2 as monosialoganglioside, and beta 1,4GalNAc disialyl-Lc(4) (RM2 antigen) as disialoganglioside [J. Biol. Chem. 276 (2001) 16695]. In order to observe the functional role of gangliosides in RCC malignancy, TOS1 cells were transfected with short interfering RNA (siRNA) based on open reading frame sequence of beta 1,4GalNAc transferase (beta 1,4GalNAc-T), and its disordered sequence of siRNA (dsiRNA) as control. In siRNA transfectant, beta 1,4GalNAc-T mRNA level and GM2 expression were greatly reduced, whereby GM3 expression appeared. In contrast, RM2 antigen level was unchanged, even though it has the same beta 1,4GalNAc epitope at the terminus. dsiRNA transfectant showed no change of beta 1,4GalNAc-T mRNA and did not express GM3. Concomitant with reduction of GM2 and appearance of GM3, siRNA transfectant showed greatly reduced motility and invasiveness, although growth rate was unaltered. Both transfectants with siRNA and dsiRNA expressed the same level of tetraspanin CD9. Since CD9/GM3 complex is known to reduce integrin-dependent motility and invasiveness [Biochemistry 40 (2001) 6414], it is plausible that motility and invasiveness of siRNA transfectant of TOS1 cells may be reduced by enhanced formation of such complex.  相似文献   
75.
76.
77.
Amounts of DNA strand breaks were estimated by the proportion of cells without tails (PCWT) and the average lengths of tail momentum (ALTM) in comet images of tissue cells of senescence-accelerated prone (SAMP1) mouse and senescence-accelerated resistant (SAMR1) mouse. The PCWT and ALTM of brain cells from SAMR1 were unchanged from 4 to 15 months of age. In the case of SAMP1 brain cells, the PCWT decreased and the ALTM increased in an age-related manner from 8 to 15 months of age. In the cases of liver and kidney, the PCWT and the ALTM of both SAMP1 and SAMR1 cells showed constant values from 4 to 15 months of ages.  相似文献   
78.
A model of elegance.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   
79.
Experiments were carried out to elucidate the characteristics of regulation of cyclic AMP levels in intact myocardial cells. For this purpose, the influence of isoproterenol, a nonselective cyclic nucleotide phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and carbachol on cyclic AMP levels was investigated in isolated rat cardiac myocytes. The extent of cyclic AMP accumulation induced by isoproterenol was much less than that produced by IBMX: submaximal concentrations of isoproterenol and IBMX elevated the cyclic AMP level 2.4- and 4.8-fold of the control level, respectively. Both agents in combination increased the cyclic AMP level markedly 48-fold. Carbachol inhibited the cyclic AMP accumulation induced by isoproterenol, IBMX and their combination by 30%, 60% and 80% of the respective response. The extent of inhibition produced by carbachol of the cyclic AMP accumulation induced by IBMX + isoproterenol was smaller than that caused by propranolol, and carbachol produced only a marginal additional inhibitory action to that of propranolol, implying that carbachol does not affect the process of cyclic AMP degradation. The present findings indicate that in intact cardiac myocytes the rate of cyclic AMP degradation catalyzed by PDE may be a crucial process of cyclic AMP turnover. This view is supported by the observations that the inhibitory action of carbachol on the effect of isoproterenol was less than that on the effect of IBMX, and that the inhibitory action of carbachol was markedly enhanced by the simultaneous presence of IBMX.  相似文献   
80.
The frequency of mutant T lymphocytes defective in T-cell receptor gene (alpha or beta) expression was measured using the 2-color flow cytometric technique. Results for a total of 203 atomic bomb survivors, 78 of whom were proximally exposed (DS86 doses of greater than or equal to 1.5 Gy) and 125 of whom were distally exposed (DS86 dose of less than 0.005 Gy), showed that the mutant frequency was significantly higher in males than in females. No significant dose effects were observed. In contrast, a significant increase of mutant frequency was observed for 6 patients treated with Thorotrast, a contrast medium containing thorium-232 formerly used for radioligands. In addition, thyroid disease patients treated with 131I showed a dose-related increase of mutant frequency. It was suggested that the present T-cell receptor mutation assay has a unique characteristic as a biological dosimeter for measurement of recent exposures to genotoxic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号