首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13722篇
  免费   890篇
  国内免费   2篇
  14614篇
  2022年   83篇
  2021年   141篇
  2019年   100篇
  2018年   136篇
  2017年   110篇
  2016年   207篇
  2015年   319篇
  2014年   355篇
  2013年   799篇
  2012年   655篇
  2011年   616篇
  2010年   343篇
  2009年   394篇
  2008年   603篇
  2007年   604篇
  2006年   596篇
  2005年   595篇
  2004年   625篇
  2003年   600篇
  2002年   560篇
  2001年   544篇
  2000年   530篇
  1999年   437篇
  1998年   171篇
  1997年   158篇
  1996年   139篇
  1995年   112篇
  1994年   124篇
  1993年   129篇
  1992年   329篇
  1991年   306篇
  1990年   308篇
  1989年   283篇
  1988年   239篇
  1987年   238篇
  1986年   211篇
  1985年   181篇
  1984年   136篇
  1983年   131篇
  1982年   114篇
  1981年   107篇
  1980年   89篇
  1979年   113篇
  1978年   91篇
  1977年   80篇
  1976年   81篇
  1975年   71篇
  1974年   86篇
  1973年   93篇
  1971年   67篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Efficient reproduction using natural mating and reproduction technology [in vitro fertilization (IVF) and embryo transfer (ET)] was investigated in IRS2 deficient mice with C57BL/6JJcl genetic background (Irs2(-/-) mice) as a typical type 2 diabetes model. From the results using various combinations of Irs2(-/-) and Irs2(-/+) mice, the combination of female Irs2(-/+) x male Irs2(-/-) was found to be more efficient than other combinations. In applications of reproduction technology using IVF and ET, the combination of female Irs2(-/+) x male Irs2(-/-) involves the possibility of Irs2(-/-) production by repeats using female Irs2(-/+) mice. However, reproductive continuity using this combination is difficult because of dependence on human technique and the cost of ET. Therefore, we concluded that Irs2(-/-) mice should be produced by embryo transfer using Irs2(-/-) mice from a colony consisting of female Irs2(-/+) x male Irs2(-/-).  相似文献   
992.
Glucocorticoids are extensively used in anti-inflammatory therapy and are thought to contribute to the steady-state regulation of hematopoiesis and lymphopoiesis. We have previously established MC2R(-/-) mice, a model of familial glucocorticoid deficiency, that show several similarities to patients with this disease, including undetectable levels of corticosterone, despite high levels of ACTH and unresponsiveness to ACTH. In this study, we analyzed the possible roles of endogenous glucocorticoids in hematopoiesis and lymphopoiesis in MC2R(-/-) and CRH(-/-) mice as models of chronic adrenal insufficiency. Our analysis of total peripheral blood cell counts revealed that the number of lymphocytes was increased and the number of erythrocytes was slightly, but significantly, decreased in MC2R(-/-) mice. Numbers of immature double negative (CD4(-) CD8(-)) thymocytes, transitional type 1 B cells in the spleen, and pre-B cells in the bone marrow, were significantly increased in MC2R(-/-) mice, suggesting that endogenous glucocorticoids contribute to steady-state regulation of lymphopoiesis. Oral glucocorticoid supplementation reversed peripheral blood cell counts and reduced numbers of T and B cells in the thymus and the spleen. T cells in the thymus and B cells in the spleen were also increased in CRH(-/-) mice, another animal model of chronic adrenal insufficiency. MC2R(-/-) mice were sensitive to age-related thymic involution, but they were resistant to fasting-associated thymic involution. Our data support the idea that endogenous glucocorticoids contribute to stress-induced as well as steady-state regulation of hematopoiesis and lymphopoiesis.  相似文献   
993.
AimPoly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair enzyme, and its excessive activation, following ischemia, trauma, etc., depletes cellular nicotinamide adenine dinucleotide (NAD+) as a substrate and eventually leads to brain cell death. Nicotinamide, an NAD+ precursor and a PARP-1 inhibitor, is known to prevent PARP-1-triggered cell death, but there is no available information on the mechanisms involved in its transport. Here we clarified the transport characteristics of nicotinamide in primary cultured mouse astrocytes.Main methodsUptake characteristics of [14C]nicotinamide were assessed by a conventional method with primary cultured mouse astrocytes. Cell viability and PARP-1 activity were determined with intracellular LDH activity and immunocytochemical detection of PAR accumulation, respectively.Key findingsPARP-1 activation was induced by treatment of astrocytes with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent. MNNG-triggered astrocyte death and PAR accumulation were completely inhibited by treatment with nicotinamide as with DPQ (3,4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2H)-isoquinolinone), a second generation PARP inhibitor. The uptake of [14C]nicotinamide was time-, temperature-, concentration- and pH-dependent, and was inhibited and stimulated by co- and pre-treatment with N-methylnicotinamide, a representative substrate of an organic cation transport system, respectively. Co-treatment of astrocytes with nicotinamide and N-methylnicotinamide resulted in a decrease in PAR accumulation and absolute prevention of cell death.SignificanceThese findings suggest that nicotinamide has a protective effect against PARP-1-induced astrocyte death and that its transporter-mediated uptake, which is extracellular pH-sensitive and common to N-methylnicotinamide, is critical for prevention of PARP-1-triggered cell death.  相似文献   
994.
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into neuronal and glial cells. NSCs are the source for neurogenesis during central nervous system development from fetal and adult stages. Although the human natural killer-1 (HNK-1) carbohydrate epitope is expressed predominantly in the nervous system and involved in intercellular adhesion, cell migration, and synaptic plasticity, the expression patterns and functional roles of HNK-1-containing glycoconjugates in NSCs have not been fully recognized. We found that HNK-1 was expressed in embryonic mouse NSCs and that this expression was lost during the process of differentiation. Based on proteomics analysis, it was revealed that the HNK-1 epitopes were almost exclusively displayed on an extracellular matrix protein, tenascin-C (TNC), in the mouse embryonic NSCs. Furthermore, the HNK-1 epitope was found to be present only on the largest isoform of the TNC molecules. In addition, the expression of HNK-1 was dependent on expression of the largest TNC variant but not by enzymes involved in the biosynthesis of HNK-1. By knocking down HNK-1 sulfotransferase or TNC by small interfering RNA, we further demonstrated that HNK-1 on TNC was involved in the proliferation of NSCs via modulation of the expression level of the epidermal growth factor receptor. Our finding provides insights into the function of HNK-1 carbohydrate epitopes in NSCs to maintain stemness during neural development.  相似文献   
995.
E6‐associated protein (E6AP) is a cellular ubiquitin protein ligase that mediates ubiquitylation and degradation of tumor suppressor p53 in conjunction with the high‐risk human papillomavirus E6 protein. We previously reported that E6AP targets annexin A1 protein for ubiquitin‐dependent proteasomal degradation. To gain a better understanding of the physiological function of E6AP, we have been seeking to identify novel substrates of E6AP. Here, we identified peroxiredoxin 1 (Prx1) as a novel E6AP‐binding protein using a tandem affinity purification procedure coupled with mass spectrometry. Prx1 is a 25‐kDa member of the Prx family, a ubiquitous family of antioxidant peroxidases that regulate many cellular processes through intracellular oxidative signal transduction pathways. Immunoprecipitation analysis showed that E6AP binds Prx1 in vivo. Pull‐down experiments showed that E6AP binds Prx1 in vitro. Ectopic expression of E6AP enhanced the degradation of Prx1 in vivo. In vivo and in vitro ubiquitylation assays revealed that E6AP promoted polyubiquitylation of Prx1. RNAi‐mediated downregulation of endogenous E6AP increased the level of endogenous Prx1 protein. Taken together, our data suggest that E6AP mediates the ubiquitin‐dependent proteasomal degradation of Prx1. Our findings raise a possibility that E6AP may play a role in regulating Prx1‐dependent intracellular oxidative signal transduction pathways. J. Cell. Biochem. 111: 676–685, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
996.
AIMS: Lactobacillus sp. LA2 (DSM15502) and related strains (LA2 group) possess strong beer-spoilage ability. The 16S rDNA sequence of LA2 strain is virtually indistinguishable from that of L. collinoides, generally considered to be nonbeer-spoilage bacteria. The aim of this study was to identify the genetic marker to distinguish between Lactobacillus sp. LA2 group and L. collinoides and to provide a rapid means of identifying beer-spoilage strains belonging to Lactobacillus sp. LA2 group. METHODS AND RESULTS: The 16-23S rDNA intergenic spacer (ITS) regions of Lactobacillus sp. LA2 and L. collinoides JCM1123T were sequenced to identify a genetic marker to distinguish between the two groups. As a result, 300 and 500 bp ITS regions of Lactobacillus sp. LA2 were found to be almost identical with those of L. collinoides JCM1123T. Sequence comparison analysis between Lactobacillus sp. LA2 and L. collinoides JCM1123T revealed that the two contiguously located nucleotides are absent in both ITS regions of Lactobacillus sp. LA2. Based on the sequence difference, we have designed specific PCR primers with a minor modification to the primer sequence that can differentiate between beer-spoilage Lactobacillus sp. LA2 group and nonbeer-spoilage L. collinoides. CONCLUSIONS: The PCR-based method has been developed to identify Lactobacillus sp. LA2 group, providing a rapid and sensitive means of determining the beer-spoilage ability of detected bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The substitution of one nucleotide, located at the third position to the 3'-end in the primer sequence, enhanced the specificity of the PCR method while retaining sufficient sensitivity. The nucleotide gap identified in this study appeared to serve as a useful genetic marker that can differentiate 12 beer-spoilage Lactobacillus sp. LA2 group strains from its close relatives that exhibit no beer-spoilage ability.  相似文献   
997.
The superoxide-producing phagocyte NADPH oxidase can be reconstituted in a cell-free system. The activity of NADPH oxidase is dependent on FAD, but the physiological status of FAD in the oxidase is not fully elucidated. To clarify the role of FAD in NADPH oxidase, FAD-free full-length recombinant p47(phox), p67(phox), p40(phox), and Rac were prepared, and the activity was reconstituted with these proteins and purified cytochrome b(558) (cyt b(558)) with different amounts of FAD. A remarkably high activity, over 100 micromol/s/micromol heme, was obtained in the oxidase with purified cyt b(558), ternary complex (p47-p67-p40(phox)), and Rac. From titration with FAD of the activity of NADPH oxidase reconstituted with purified FAD-devoid cyt b, the dissociation constant K(d) of FAD in cyt b(558) of reconstituted oxidase was estimated as nearly 1 nm. We also examined addition of FAD on the assembly process in reconstituted oxidase. The activity was remarkably enhanced when FAD was present during assembly process, and the efficacy of incorporating FAD into the vacant FAD site in purified cyt b(558) increased, compared when FAD was added after assembly processes. The absorption spectra of reconstituted oxidase under anaerobiosis showed that incorporation of FAD into cyt b(558) recovered electron flow from NADPH to heme. From both K(d) values of FAD and the amount of incorporated FAD in cyt b(558) of reconstituted oxidase, in combination with spectra, we propose the model in which the K(d) values of FAD in cyt b(558) is changeable after activation and FAD binding works as a switch to regulate electron transfer in NADPH oxidase.  相似文献   
998.
It is well known that the functions of metalloproteins generally originate from their metal‐binding motifs. However, the intrinsic nature of individual motifs remains unknown, particularly the details about metal‐binding effects on the folding of motifs; the converse is also unknown, although there is no doubt that the motif is the core of the reactivity for each metalloprotein. In this study, we focused our attention on the zinc‐binding motif of the metzincin clan family, HEXXHXXGXXH; this family contains the general zinc‐binding sequence His–Glu–Xaa–Xaa–His (HEXXH) and the extended GXXH region. We adopted the motif sequence of stromelysin‐1 and investigated the folding properties of the Trp‐labeled peptides WAHEIAHSLGLFHA (STR‐W1), AWHEIAHSLGLFHA (STR‐W2), AHEIAHSLGWFHA (STR‐W11), and AHEIAHSLGLFHWA (STR‐W14) in the presence and absence of zinc ions in hydrophobic micellar environments by circular dichroism (CD) measurements. We accessed successful incorporation of these zinc peptides into micelles using quenching of Trp fluorescence. Results of CD studies indicated that two of the Trp‐incorporated peptides, STR‐W1 and STR‐W14, exhibited helical folding in the hydrophobic region of cetyltrimethylammonium chloride micelle. The NMR structural analysis of the apo STR‐W14 revealed that the conformation in the C‐terminus GXXH region significantly differred between the apo state in the micelle and the reported Zn‐bound state of stromelysin‐1 in crystal structures. The structural analyses of the qualitative Zn‐binding properties of this motif peptide provide an interesting Zn‐binding mechanism: the minimum consensus motif in the metzincin clan, a basic zinc‐binding motif with an extended GXXH region, has the potential to serve as a preorganized Zn binding scaffold in a hydrophobic environment. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
999.
1000.
The production of diarrhetic shellfish poisoning toxins (okadaic acid analogues and other lipophilic toxins) by a culture of Dinophysis acuminata, fed with the autotrophic ciliate Myrionecta rubra, was confirmed by LC–MS analysis, and the toxin profile compared with that in the field assemblage of the same species. The growth response of D. acuminata to the density of the food organism was also examined in laboratory experiments. In semi-continuous culture experiments, the growth rates of D. acuminata increased with increasing density of M. rubra and a maximum growth rate of 0.67 per day was calculated. In batch culture experiments; the cellular content of PTX2 and DTX1 were 14.7–14.8 and 2.5–4.8 pg cell?1, respectively. Okadaic acid, dinophysistoxin-3, pectenotoxin-1, pectenotoxin-6, yessotoxin (YTX) and 45-OHYTX were not detected. PTX2 was detected (cellular toxin content: 22 pg cell?1), but DTX1 was not detected, in an extract of D. acuminata collected from natural seawater at the same location where the cultured D. acuminata specimens were isolated. These results strongly suggest that D. acuminata produces these toxins during cell growth and that environmental factors influence variations in the toxin composition and specific cellular toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号