首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   28篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   3篇
  2016年   13篇
  2015年   7篇
  2014年   16篇
  2013年   22篇
  2012年   22篇
  2011年   27篇
  2010年   19篇
  2009年   28篇
  2008年   30篇
  2007年   45篇
  2006年   31篇
  2005年   27篇
  2004年   31篇
  2003年   23篇
  2002年   30篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1918年   1篇
排序方式: 共有442条查询结果,搜索用时 218 毫秒
111.
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatog­raphy-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm × 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.  相似文献   
112.
Molluscan smooth muscles exhibit a low energy cost contraction called catch. Catch is regulated by twitchin phosphorylation and dephosphorylation. Recently, we found that the D2 fragment of twitchin containing the D2 site (Ser-4316) and flanking immunoglobulin motifs (TWD2-S) formed a heterotrimeric complex with myosin and with actin in the region that interacts with myosin loop 2 (Funabara, D., Hamamoto, C., Yamamoto, K., Inoue, A., Ueda, M., Osawa, R., Kanoh, S., Hartshorne, D. J., Suzuki, S., and Watabe, S. (2007) J. Exp. Biol. 210, 4399–4410). Here, we show that TWD2-S interacts directly with myosin loop 2 in a phosphorylation-sensitive manner. A synthesized peptide, CAQNKEAETTGTHKKRKSSA, based on the myosin loop 2 sequence (loop 2 peptide), competitively inhibited the formation of the trimeric complex. Isothermal titration calorimetry showed that TWD2-S binds to the loop 2 peptide with a Ka of (2.44 ± 0.09) × 105 m−1 with two binding sites. The twitchin-binding peptide of actin, AGFAGDDAP, which also inhibited formation of the trimeric complex, bound to TWD2-S with a Ka of (5.83 ± 0.05) × 104 m−1 with two binding sites. The affinity of TWD2-S to actin and myosin was slightly decreased with an increase of pH, but this effect could not account for the marked pH dependence of catch in permeabilized fibers. The complex formation also showed a moderate Ca2+ sensitivity in that in the presence of Ca2+ complex formation was reduced.Molluscan smooth muscles, such as mussel anterior byssus retractor muscle (ABRM)2 and adductor muscle, exhibit a low energy cost phase of tension maintenance termed catch. Catch muscle develops active tension following an increase of the intracellular [Ca2+] induced by secretion of acetylcholine. Myosin is activated by direct binding of Ca2+ to the regulatory myosin light chain and initiates a relative sliding between thick and thin filaments (1). After a decrease of intracellular [Ca2+] to resting levels, the catch state is formed where tension is maintained over long periods of time with little energy consumption (2, 3). Catch tension is abolished by secretion of serotonin and an increase of intracellular [cAMP] with the resulting activation of cAMP-dependent protein kinase and phosphorylation of twitchin (4, 5). Twitchin phosphorylation is required for relaxation of the muscle from catch. For this cycle to repeat, dephosphorylation of twitchin is necessary (6). Thus, in this scheme, twitchin is a major regulator of the catch state.Molluscan twitchin is known as a myosin-binding protein belonging to the titin/connectin superfamily. It is a single polypeptide of 530 kDa containing multiple repeats of immunoglobulin (Ig) and fibronectin type 3-like motifs in addition to a single kinase domain homologous to the catalytic domain of myosin light chain kinase of vertebrate smooth muscle (7). There are several possible phosphorylation sites in molluscan twitchin recognized by cAMP-dependent protein kinase, and two, D1 and D2, have been identified. The D1 phosphorylation site (Ser-1075) is in the linker region between the 7th and 8th Ig motifs (numbering from the N terminus). The D2 site (Ser-4316) is in the linker region between the 21st and 22nd Ig motifs. Additional sites are found close to D1, but are thought not to be vital for catch regulation.The molecular mechanisms underlying development and maintenance of the catch state have been controversial for several years. One theory proposes that catch reflected attached frozen or slowly cycling cross-bridges (8, 9). What distinguished the attached cross-bridge from the detached relaxed state is not clear. Also it was suggested that interactions between thick filaments, other than cross-bridges, or between thin and thick filaments are responsible for the catch contraction (10). In either of the latter cases, the cross-bridge (myosin head) was not involved.Recently we found that a twitchin fragment including the D2 phosphorylation site and its flanking Ig motifs (TWD2-S) interacted with myosin and actin in a phosphorylation-sensitive manner, and it was suggested that this trimeric complex contributed to tension maintenance in catch (11). TWD2-S bound to a region of the actin molecule known also to interact with loop 2 of myosin that is involved in the ATP-driven movement of myosin with actin (12). In the present study, we show that the myosin loop 2 binds to TWD2-S using competitive cosedimentation assays and isothermal titration calorimetry (ITC). These techniques were applied to also study in more detail the interactions of the twitchin-binding peptide of actin (identified in the previous study (11)). In addition, the effects of pH and Ca2+ on the binding of TWD2-S to myosin and actin were investigated.  相似文献   
113.
114.

Background

Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step.

Methodology/ Principal Findings

By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene.

Conclusions/ Significance

Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs.  相似文献   
115.
In Gram-negative bacteria, lipoproteins are targeted to either the inner or outer membrane depending on their sorting signals. An ABC transporter LolCDE complex in Escherichia coli releases outer membrane-specific lipoproteins. Inner membrane-specific lipoproteins remain in the inner membrane because they each have a LolCDE-avoidance signal and therefore are not released by LolCDE. Only the LolC(A40P) mutation was previously found to cause outer membrane localization of lipoproteins despite their inner membrane-retention signals. Here, we isolated several new LolCDE mutants that cause outer membrane localization of lipoproteins possessing LolCDE-avoidance signals. Mutations were found in all three subunits of LolCDE, including the cytoplasmic ATPase subunit LolD. However, the extent of outer membrane sorting of inner membrane-specific lipoproteins differed depending on the mutation. Based on these observations, the molecular events underlying the recognition of lipoproteins by the LolCDE complex are discussed.  相似文献   
116.
In this study, three fluoroquinolones, pazufloxacin, ciprofloxacin and levofloxacin, were simultaneously determined in spiked human serum by high-performance liquid chromatography (HPLC) method with fluorescence detection. Chromatography was performed using a C8 column with an isocratic mobile phase consisting of 1% triethylamine (pH 3.0)/acetonitrile (86/14, v/v). Protein precipitation was conducted using perchloric acid and methanol. The calibration curves for the three fluoroquinolones were linear over concentrations ranging from 0.1 to 20.0 μg/mL. The within-day and between-day coefficients of variation obtained from three fluoroquinolones were less than 7%, and relative errors ranged from −1.6% to 9.3%. Mean recoveries of pazufloxacin, ciprofloxacin, and levofloxacin from spiked human serum were 97%, 88%, and 90%, respectively. The proposed method proved to be simple and reliable for the determination of three fluoroquinolones.  相似文献   
117.

Background

Prenatal human immunodeficiency virus (HIV) testing is essential for the prevention of mother-to-child transmission. However, false-positive results of screening testing are a concern as they may cause unnecessary emotional stress to pregnant women waiting for confirmatory test results. In regions with an extremely low prevalence, the positive predictive values of screening are unacceptably low rate. Here, we propose a HIV screening algorithm consisting of serial two fourth-generation enzyme immunoassays to reduce the number of false-positive screening results.

Methodology/Principal Findings

When 6461 pregnant women presenting to two maternity hospitals located in the Tokyo metropolitan area of Japan from September, 2004 to January, 2006 were tested using Enzygnost HIV Integral as a first screening test, 27 showed positive reactions. When these positive reaction samples were tested using VIDAS HIV DUO Quick as a second screening test, only one of them had a positive reaction, and the remaining 26 were nonreactive. Confirmatory Western blots and nucleic acid amplification test also showed that one was positive and the remaining 26 were negative; the subject who was positive with the confirmatory tests was identical to the subject who was positive with the second screening test. Thus, by adding the second screening test, the false-positive rate was improved from 0.4% to 0%, and the positive predictive value from 3.7% to 100%, compared with the single screening test.

Conclusion

By applying our serial screening algorithm to HIV testing in maternity hospitals, many uninfected pregnant women would not need to receive confirmatory tests and be subjected to emotional turmoil while waiting for their confirmatory test results. This algorithm would be suitable for HIV testing of pregnant women living in low prevalence regions such as Japan.  相似文献   
118.
Although the endothelial expression of various adhesion molecules substantially differs between pulmonary microvessels, their importance for neutrophil and lymphocyte sequestration in ventilator-induced lung injury (VILI) has not been systematically analyzed. We investigated the kinetics of polymorphonuclear cells (PMN) and mononuclear cells (MN) in the acinar microcirculation of the isolated rat lung with VILI by real-time confocal laser fluorescence microscopy, with or without inhibition of ICAM-1, VCAM-1, or P-selectin by monoclonal antibodies (MAb). Adhesion molecules in each microvessel were estimated by intravital fluorescence microscopy or immunohistochemical staining. In high tidal volume-ventilated lungs, 1) ICAM-1, VCAM-1, and P-selectin were differently upregulated in venules, arterioles, and capillaries; 2) venular PMN rolling was improved by inhibition of ICAM-1, VCAM-1, or P-selectin, whereas arteriolar PMN rolling was improved by ICAM-1 or VCAM-1 inhibition; 3) capillary PMN entrapment was ameliorated only by anti-ICAM-1 MAb; and 4) MN rolling in venules and arterioles and MN entrapment in capillaries were improved by ICAM-1 and VCAM-1 inhibition. In conclusion, the contribution of endothelial adhesion molecules to abnormal leukocyte behavior in VILI-injured microcirculation is microvessel and leukocyte specific. ICAM-1- and VCAM-1-dependent, but P-selectin-independent, arteriolar PMN rolling, which is expected to reflect the initial stage of tissue injury, should be taken as a phenomenon unique to ventilator-associated lung injury.  相似文献   
119.
120.
Thymine glycol (Tg) is one of predominant oxidative DNA lesions caused by ionizing radiation and other oxidative stresses. Human NTH1 is a bifunctional enzyme with DNA glycosylase and AP lyase activities and removes Tg as the first step of base excision repair (BER). We have searched for the factors interacting with NTH1 by using a pull-down assay and found that GST-NTH1 fusion protein precipitates proliferating cell nuclear antigen (PCNA) and p53 as well as XPG from human cell-free extracts. GST-NTH1 also bound to recombinant FLAG-tagged XPG, PCNA, and (His)6-tagged p53 proteins, indicating direct protein-protein interaction between those proteins. Furthermore, His-p53 and FLAG-XPG, but not PCNA, stimulated the Tg DNA glycosylase/AP lyase activity of GST-NTH1 or NTH1. These results provide an insight into the positive regulation of BER reaction and also suggest a possible linkage between BER of Tg and other cellular mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号