首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   8篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   9篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
71.

Background

While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point.

Principal Findings

A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected.

Conclusions/Significance

A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut.  相似文献   
72.
Euphorbia is among the largest genera of angiosperms, with about 2000 species that are renowned for their remarkably diverse growth forms. To clarify phylogenetic relationships in the genus, we used maximum likelihood, bayesian, and parsimony analyses of DNA sequence data from 10 markers representing all three plant genomes, averaging more than 16kbp for each accession. Taxon sampling included 176 representatives from Euphorbioideae (including 161 of Euphorbia). Analyses of these data robustly resolve a backbone topology of four major, subgeneric clades--Esula, Rhizanthium, Euphorbia, and Chamaesyce--that are successively sister lineages. Ancestral state reconstructions of six reproductive and growth form characters indicate that the earliest Euphorbia species were likely woody, non-succulent plants with helically arranged leaves and 5-glanded cyathia in terminal inflorescences. The highly modified growth forms and reproductive features in Euphorbia have independent origins within the subgeneric clades. Examples of extreme parallelism in trait evolution include at least 14 origins of xeromorphic growth forms and at least 13 origins of seed caruncles. The evolution of growth form and inflorescence position are significantly correlated, and a pathway of evolutionary transitions is supported that has implications for the evolution of Euphorbia xerophytes of large stature. Such xerophytes total more than 400 species and are dominants of vegetation types throughout much of arid Africa and Madagascar.  相似文献   
73.
Antibiotic use is considered among the most severe causes of disturbance to children’s developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children’s microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children’s antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2–7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use.Trial Registration: ClinicalTrials.gov NCT01014676  相似文献   
74.
Objectives: The goal of our study was to investigate the associations of oxidized LDL (apoB100 aldehyde-modified form) and acute phase proteins (fibrinogen, CRP) with acute ischemic stroke severity and outcome.

Materials and Methods: The study included 61 ischemic stroke patients and 64 controls. Strokes were subtyped according to TOAST criteria, the severity and outcome of stroke (at 1 year) were measured.

Results: The mean triglyceride, fibrinogen, CRP and glucose values were significantly higher among cases. The median oxLDL value for patients with large artery atherosclerosis (LAA) type of stroke was significantly higher than for other subtypes. The oxLDL values did not correlate with age, stroke severity and outcome.

Conclusions: Inflammatory markers (fibrinogen and CRP) predicted the stroke severity and outcome whereas elevation of oxLDL levels did not. Our data refer to possibility that there may exist some links between the LAA subtype of stroke and elevated oxLDL (apoB100 aldehyde-modified form).  相似文献   
75.
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an α carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Cα-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Cα-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T → R and R″ → T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T → R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R″ → T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R″ → T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R″ → T transition. The cochaperonin GroES plays a passive role in the R″ → T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T → R and R″ → T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.  相似文献   
76.
Fibroblast growth factor 8 (FGF‐8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF‐8b on proliferation of PC‐3 prostate cancer cells and growth of PC‐3 tumors, and to identify FGF‐8b‐associated molecular targets. Expression of ectopic FGF‐8b in PC‐3 cells caused a 1.5‐fold increase in cell proliferation in vitro and a four‐ to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF‐8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT‐qPCR of FGF‐8b mRNA. Microarray analyses revealed significantly altered, up‐ and downregulated, genes in PC‐3 cell cultures (169 genes) and in orthotopic PC‐3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell‐to‐cell signaling and energy production, and the downregulated genes associated with differentiation (DKK‐1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT‐qPCR. In conclusion, our results demonstrate that FGF‐8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF‐8b actions on prostate cancer progression and metastasis. J. Cell. Biochem. 107: 769–784, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
77.
78.
Fish with a transgene for growth hormone grow faster than the wild type and may have an advantage in sexual selection due to their larger size and earlier maturation. The cost in these genetically modified organisms (GMOs) is a lower viability of their offspring. The Trojan gene effect is a hypothesis that predicts that the release of such fish in nature can lead to an invasion by GMOs but ultimately decrease population size to extinction. We modelled GMO invasion with Mendelian inheritance of two alleles in one locus and the resulting mating and population dynamics of wild, GMO and hybrid genotypes. Invasion was attempted over a range of initial densities, representing scenarios from accidental escape to large-scale deliberate introduction of the transgenic genotype. Our results show that invasion strongly depends on hybrid fitness, requiring only a low initial density when GMOs and hybrids are preferred in mating. Preference against hybrids results in an invasion threshold, above which mating between GMOs are sufficiently frequent for invasion to take place. GMO invasion may decrease population size, but contrary to earlier studies on the Trojan gene effect, extinctions do not occur. This is due to the lower viability of GMOs being balanced by the decreased number of competitors reducing the effects of density dependence. The results emphasize the importance of initial density, hybrid fitness and density dependence when considering invasion through hybridization.  相似文献   
79.
The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone misfolded state. During the catalytic reaction cycle, GroEL undergoes a series of allosteric transitions (T<-->R-->R"-->T) triggered by SP capture, ATP binding and hydrolysis, and GroES binding. We developed a general kinetic model that takes into account the coupling between the rates of the allosteric transitions and the folding and aggregation of the SP. Our model, in which the GroEL allosteric rates and SP-dependent folding and aggregation rates are independently varied without prior assumption, quantitatively fits the GroEL concentration-dependent data on the yield of native ribulose bisphosphate carboxylase/oxygenase (Rubisco) as a function of time. The extracted kinetic parameters for the GroEL reaction cycle are consistent with the available values from independent experiments. In addition, we also obtained physically reasonable parameters for the kinetic steps in the reaction cycle that are difficult to measure. If experimental values for GroEL allosteric rates are used, the time-dependent changes in native-state yield at eight GroEL concentrations can be quantitatively fit using only three SP-dependent parameters. The model predicts that the differences in the efficiencies (as measured by yields of the native state) of GroEL, single-ring mutant (SR1), and variants of SR1, in the rescue of mitochondrial malate dehydrogenase, citrate synthase, and Rubisco, are related to the large variations in the allosteric transition rates. We also show that GroEL/S mutants that efficiently fold one SP at the expense of all others are due to a decrease in the rate of a key step in the reaction cycle, which implies that wild-type GroEL has evolved as a compromise between generality and specificity. We predict that, under maximum loading conditions and saturating ATP concentration, the efficiency of GroEL (using parameters for Rubisco) depends predominantly on the rate of R-->R" transition, while the equilibrium constant of the T<-->R has a small effect only. Both under sub- and superstoichiometric GroEL concentrations, enhanced efficiency is achieved by rapid turnover of the reaction cycle, which is in accord with the predictions of the iterative annealing mechanism. The effects are most dramatic at substoichiometric conditions (most relevant for in vivo situations) when SP aggregation can outcompete capture of SP by chaperonins.  相似文献   
80.
Croton campanulatus, a new species from southeastern Brazil in the states of Minas Gerais and Rio de Janeiro, is here described and illustrated. Morphological data indicate that this species belongs to Croton section Cleodora based on its arborescent habit, pistillate flowers with imbricate sepals, reduced petals, and multifid styles that are fused at the base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号