首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   17篇
  211篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   6篇
  2013年   10篇
  2012年   17篇
  2011年   14篇
  2010年   10篇
  2009年   6篇
  2008年   14篇
  2007年   17篇
  2006年   15篇
  2005年   10篇
  2004年   7篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1986年   3篇
  1980年   1篇
排序方式: 共有211条查询结果,搜索用时 0 毫秒
21.
Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment.  相似文献   
22.
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.  相似文献   
23.
Trichinellosis is 1 of the most widespread parasitic zoonoses in the world and can be lethal to humans. Trichinella spp. are also parasites of considerable economic importance. Because rats may play a role in the transmission of trichinellosis to swine and farmed wild boar, 767 brown rats (Rattus norvegicus Berkenhout) from 13 Finnish waste disposal sites were examined for Trichinella spp. by a HCl-pepsin digestion method. Trichinella spp. were found to be a common parasite in trapped rats (overall prevalence, 19%) detected in 12 of 13 dumps. Significant differences were observed between sites in the prevalence (0-49%) of Trichinella spp. Female rats were more often and more heavily infected than males, but age was not shown to be a risk factor for trichinellosis. In addition, positive correlation was demonstrated between rat population density and prevalence. Trichinella spiralis was identified by multiplex polymerase chain reaction in 28 rats. The median density of infection was 42 (range, 0.5-6,925) larvae/ g of host tissue, but neither the occurrence nor the density of the parasite was related to the physical condition of the animal.  相似文献   
24.
The common apolipoprotein E (apoE) gene (APOE) epsilon2/epsilon3/epsilon4 polymorphism explains part of serum lipid variation, and polymorphisms in the APOE promoter region have been proposed to participate in the regulation of serum lipid levels within the most common APOE epsilon3/epsilon3 genotype group. We determined APOE -219G/T and +113G/C promoter genotypes and estimated APOE haplotypes in 525 participants of the Cardiovascular Risk in Young Finns Study. We studied the associations of the APOE promoter polymorphisms and their haplotypes with cross-sectional and longitudinal serum lipid and apolipoprotein concentrations as well as with flow-mediated dilatation (FMD), carotid artery compliance (CAC), and intima-media thickness (IMT) within the APOE epsilon3/epsilon3 carriers. We found no significant association between the APOE promoter genotypes and serum lipids [low density lipoprotein-cholesterol (LDL-C), HDL-C, and triglycerides], apolipoproteins (apoA-I and apoB), or brachial artery FMD, CAC, or carotid IMT in either men or women. In longitudinal analyses in males, the carriers of heterozygous genotypes (-219G/T or +113G/C) and, furthermore, carriers of the -219T/+113C/epsilon3 haplotype had significantly higher LDL-C and total cholesterol concentrations throughout the 21 year follow-up period compared with homozygous G allele carriers or noncarriers of the -219T/+113C/epsilon3 haplotype. Such associations were not found in females. In summary, the APOE promoter polymorphisms -219G/T and +113G/C as well as their haplotype are associated with longitudinal changes in LDL-C and total cholesterol concentrations in young Finnish males but do not seem to be major determinants for FMD, CAC, or carotid IMT in males or females.  相似文献   
25.
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.  相似文献   
26.
27.
Species of Grosmannia with Leptographium anamorphs include important forest pathogens and agents of blue stain in timber. They are commonly found in association with forest pests, such as bark beetles. During a survey of ophiostomatoid fungi in eastern parts of Finland and neighboring Russia, species belonging to the genus Grosmannia were isolated from 12 different bark beetle species infesting Picea abies and Pinus sylvestris, the most economically important conifers in the region. Identification of these fungi was based on morphology, DNA sequence comparisons for three gene regions and phylogenetic analyses. A total of ten taxa were identified. These belonged to six different species complexes in Grosmannia. The phylogenetic analyses provided an opportunity to redefine the G. galeiformis-, L. procerum-, L. lundbergii-, G. piceiperda-, G. olivacea- and G. penicillata-complexes, and to consider the species emerging from the survey within the context of these complexes. The species included G. galeiformis, G. olivacea, L. chlamydatum, L. lundbergii, L. truncatum and a novel taxon, described here as L. taigense sp. nov. In addition, species closely related to G. cucullata, G. olivaceapini comb. nov., G. piceiperda and L. procerum were isolated but their identity could not be resolved. The overall results indicate that the diversity of Grosmannia species in the boreal forests remains poorly understood and that further studies are needed to clarify the status of several species or species complexes.  相似文献   
28.
Genomic integrity of human pluripotent stem cell (hPSC) lines requires routine monitoring. We report here that novel karyotyping assay, utilizing bead-bound bacterial artificial chromosome probes, provides a fast and easy tool for detection of chromosomal abnormalities in hPSC lines. The analysis can be performed from low amounts of DNA isolated from whole cell pools with simple data analysis interface. The method enables routine screening of stem cell lines in a cost-efficient high-throughput manner.  相似文献   
29.
Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection.  相似文献   
30.
Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号