首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
  95篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   2篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
41.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   
42.
Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.  相似文献   
43.
Cytochrome P450 (CYP) enzymes play key roles in drug metabolism and adverse drug-drug interactions. Despite tremendous efforts in the past decades, essential questions regarding the function and activity of CYPs remain unanswered. Here, we used a combination of sequence-based co-evolutionary analysis and structure-based anisotropic thermal diffusion (ATD) molecular dynamics simulations to detect allosteric networks of amino acid residues and characterize their biological and molecular functions. We investigated four CYP subfamilies (CYP1A, CYP2D, CYP2C, and CYP3A) that are involved in 90% of all metabolic drug transformations and identified four amino acid interaction networks associated with specific CYP functionalities, i.e., membrane binding, heme binding, catalytic activity, and dimerization. Interestingly, we did not detect any co-evolved substrate-binding network, suggesting that substrate recognition is specific for each subfamily. Analysis of the membrane binding networks revealed that different CYP proteins adopt different membrane-bound orientations, consistent with the differing substrate preference for each isoform. The catalytic networks were associated with conservation of catalytic function among CYP isoforms, whereas the dimerization network was specific to different CYP isoforms. We further applied low-temperature ATD simulations to verify proposed allosteric sites associated with the heme-binding network and their role in regulating metabolic fate. Our approach allowed for a broad characterization of CYP properties, such as membrane interactions, catalytic mechanisms, dimerization, and linking these to groups of residues that can serve as allosteric regulators. The presented combined co-evolutionary analysis and ATD simulation approach is also generally applicable to other biological systems where allostery plays a role.  相似文献   
44.
Female spawning-site preference within a nest and its effect on the female mate choice in a paternal brooding blenny Rhabdoblennius ellipes , were examined in rocky intertidal pools using artificial nests. The number of eggs deposited at the nest entrance site was lower than the number deposited at the center and at deep sites. Moreover, the within-nest difference in the egg developmental stage indicated that eggs at the nest entrance site were deposited after those at the center and deep sites. These results indicated that females prefer to spawn eggs in the center and deep sites rather than at the entrance site. Owing to the higher egg mortality rate at the entrance site, females may avoid spawning at such sites. An analysis of the nests in the study area suggested that the within-nest site preference affects female mate choice that is females avoided nests where only the entrance site was available for spawning and instead spawned in nests where the center and deep sites were available.  相似文献   
45.
Endo-alpha-N-acetylgalactosaminidase (endo-alpha-GalNAc-ase) catalyzes the hydrolysis of the O-glycosidic bond between alpha-GalNAc at the reducing end of mucin-type sugar chains and serine/threonine of proteins to release oligosaccharides. Previously, we identified the gene engBF encoding endo-alpha-GalNAc-ase from Bifidobacterium longum, which specifically released the disaccharide Gal beta 1-3GalNAc (Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K. 2005. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem. 280:37415-37422). Here we cloned a similar gene named engCP from Clostridium perfringens, a pathogenic enterobacterium, and characterized the gene product EngCP. Detailed analyses on substrate specificities of EngCP and EngBF using a series of p-nitrophenyl-alpha-glycosides chemically synthesized by the di-tert-butylsilylene-directed method revealed that both enzymes released Hex/HexNAc beta 1-3GalNAc (Hex = Gal or Glc). EngCP could also release the core 2 trisaccharide Gal beta 1-3(GlcNAc beta 1-6)GalNAc, core 8 disaccharide Gal alpha 1-3GalNAc, and monosaccharide GalNAc. Our results suggest that EngCP possesses broader substrate specificity than EngBF. Actions of the two enzymes on native glycoproteins and cell surface glycoproteins were also investigated.  相似文献   
46.
Caspase activation and proteolytic cleavage of specific target proteins represents an integral step in the pathway leading to the apoptotic death of cells. Analysis of caspase activity in intact cells, however, has been generally limited to the measurement of end-point biochemical and morphological markers of apoptosis. In an effort to develop a strategy with which to monitor caspase activity, early in the cell death cascade and in real-time, we have generated cell lines that overexpress recombinant GFP-based caspase substrates that display a quantifiable change in their spectral properties when cleaved by group II caspases. Specifically, tandem GFP substrates linked by a caspase-sensitive cleavage site show diminished fluorescence resonance energy transfer (FRET), as a consequence of cleavage, due to physical separation of the GFP moieties in apoptotic cells. We have evaluated the influence of different caspase-sensitive linkers on both FRET efficiency and cleavage by caspase-3. We also demonstrate that caspase activity as well as inhibition by pharmacological agents can be monitored, with minimal manipulation, in intact adherent cells seeded in a 96-well cell culture dish. Finally, we have adapted this technology to a high throughput screening platform to identify novel small molecule and cell permeable inhibitors of apoptosis. Based on a biochemical analysis of the compounds identified it is clear that this assay can be used to detect drugs which inhibit caspases directly as well as those which target upstream components of the caspase cascade.  相似文献   
47.
A robust method for the solid phase synthesis of a series of selective caspase-3 peptide inhibitors is described. The inhibitors can be obtained after cleavage from the solid support without further purification.  相似文献   
48.
The application of Chiral Technology, or the (extensive) use of techniques or tools for the determination of absolute stereochemistry and the enantiomeric or chiral separation of racemic small molecule potential lead compounds, has been critical to successfully discovering and developing chiral drugs in the pharmaceutical industry. This has been due to the rapid increase over the past 10-15 years in potential drug candidates containing one or more asymmetric centers. Based on the experiences of one pharmaceutical company, a summary of the establishment of a Chiral Technology toolbox, including the implementation of known tools as well as the design, development, and implementation of new Chiral Technology tools, is provided.  相似文献   
49.
50.
cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号