首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   22篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   8篇
  2014年   11篇
  2013年   7篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   8篇
  2002年   13篇
  2001年   6篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1956年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
11.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   
12.
13.
Ferulic acid (FA) is an abundantly present phenolic constituent of plant cell walls. Kinetically controlled incubation of FA and the tripeptide Gly-Tyr-Gly (GYG) with horseradish peroxidase and H2O2 yielded a range of new cross-linked products. Two predominant series of hetero-oligomers of FA linked by dehydrogenation to the peptidyl tyrosine were characterized by electrospray ionization (tandem) mass spectrometry. One series comprises GYG coupled with 4-7 FA moieties linked by dehydrogenation, of which one is decarboxylated. In the second series 4-9 FA moieties linked by dehydrogenation, of which two are decarboxylated, are coupled to the tripeptide. A third series comprises three hetero-oligomers in which the peptidyl tyrosine is linked to 1-3 FA moieties of which none is decarboxylated. Two mechanisms for the formation of the FA-Tyr oligomers that result from the dualistic, concentration-dependent chemistry of FA and their possible role in the regulation of plant cell wall tissue growth are presented.  相似文献   
14.
The products of the cellulose synthase A (CESA) gene family are thought to function as isoforms of the cellulose synthase catalytic subunit, but for most CESA genes, the exact role in plant growth is still unknown. Assessing the function of individual CESA genes will require the identification of the null-mutant phenotypes and of the gene expression profiles for each gene. Here, we report that only four of 10 CESA genes, CESA1, CESA2, CESA3, and CESA9 are significantly expressed in the Arabidopsis embryo. We further identified two new mutations in the RADIALLY SWOLLEN1 (RSW1/CESA1) gene of Arabidopsis that obstruct organized growth in both shoot and root and interfere with cell division and cell expansion already in embryogenesis. One mutation is expected to completely abolish the enzymatic activity of RSW1(CESA1) because it eliminated one of three conserved Asp residues, which are considered essential for beta-glycosyltransferase activity. In this presumed null mutant, primary cell walls are still being formed, but are thin, highly undulated, and frequently interrupted. From the heart-stage onward, cell elongation in the embryo axis is severely impaired, and cell width is disproportionally increased. In the embryo, CESA1, CESA2, CESA3, and CESA9 are expressed in largely overlapping domains and may act cooperatively in higher order complexes. The embryonic phenotype of the presumed rsw1 null mutant indicates that the RSW1(CESA1) product has a critical, nonredundant function, but is nevertheless not strictly required for primary cell wall formation.  相似文献   
15.
Parietal cells of the gastric fundic mucosa are small and contain only a few tiny mitochondria when they begin to differentiate from mucous neck cells. The canalicular ATPase activity characteristic of mature parietal cells is discrete in these young cells, whereas areas of very high activity are apparent in the Golgi complex, reticulum, nuclear envelope, mitochondrial wall, and plasma membrane. Close relations and contacts occur between mitochondria and these organelles, and the size and number of mitochondria increase progressively. These relations, as well as mitochondrial ATPase activity (a true differentiation marker), cease once the mitochondria become as numerous and large as those of a mature parietal cell. Our observations suggest that a secondary form of mitochondrial biogenesis, involving the massive participation of other organelles and independent of the classical mechanisms inherent in mitosis, occurs in parietal cells at the beginning of G1 phase during the 6 days of their maturation.  相似文献   
16.
For the further optimization of antibody expression in plants,it is essential to determine the final accumulation sites ofplant-made antibodies. Previously, we have shown that, uponsecretion, IgG antibodies and Fab fragments can be detectedin the intercellular spaces of leaf mesophyil cells of transgenicArabidopsis thaliana plants. However, immunofluorescence microscopyshowed that this is probably not their final accumulation site.In leaves, IgG and Fabfragments accumulate also at the interiorside of the epidermal cell layers and in xylem vessels. Theseaccumulation sites correspond with the leaf regions where waterof the transpiration stream is entering a space impermeableto the proteins or where water is evaporating. In roots, plant-madeFab fragments accumulate in intercellular spaces of cortex cells,in the cytoplasm of pericycle and, to a lesser extent, endodermiscells, and in cells of the vascular cylinder. In other words,antibody accumulation occurs at the sites where water passeson its radial pathway towards and within the vascular bundle.Taken together, our results suggest that, upon secretion ofplant-made antibodies or Fab fragments, a large proportion ofthese proteins are transported in the apoplast of A. thaliana,possibly by the water flow in the transpiration stream. 4Corresponding author. Fax 32-9-2645349; e-mail: anpic{at}gengenp.rug.ac.be  相似文献   
17.
18.
Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase.  相似文献   
19.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   
20.
Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号