首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   93篇
  2023年   5篇
  2022年   11篇
  2021年   37篇
  2020年   16篇
  2019年   20篇
  2018年   27篇
  2017年   11篇
  2016年   35篇
  2015年   70篇
  2014年   68篇
  2013年   101篇
  2012年   127篇
  2011年   120篇
  2010年   63篇
  2009年   49篇
  2008年   83篇
  2007年   58篇
  2006年   69篇
  2005年   77篇
  2004年   47篇
  2003年   45篇
  2002年   32篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1979年   3篇
  1976年   2篇
  1973年   1篇
  1963年   1篇
  1960年   2篇
  1959年   2篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1270条查询结果,搜索用时 15 毫秒
151.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   
152.
Recent studies have indicated that culturable bacteria constitute highly sensitive bioindicators of metal-induced stress in soil. We report the impact of different copper exposure levels characteristic of contaminated agricultural soils on culturable Pseudomonas spp. in the rhizosphere of sugar beet. We observed that the abundance of Pseudomonas spp. was much more severely affected than that of the general population of culturable heterotrophic bacteria by copper. For diversity assessment, Pseudomonas isolates were divided into operational taxonomic units based on amplified ribosomal DNA restriction analysis and genomic PCR fingerprinting by universally primed PCR. Copper significantly decreased the diversity of Pseudomonas spp. in the rhizosphere and significantly increased the frequency of copper-resistant isolates. Concomitant chemical and biological analysis of copper in the rhizosphere and in bulk soil extracts indicated no rhizosphere effect and a relatively low copper bioavailability in the studied soil, suggesting that the observed effects of copper may occur at lower total concentrations in other soils. We conclude that culturable Pseudomonas sensu stricto constitutes a highly sensitive and relevant bioindicator group for the impact of copper in the rhizosphere habitat, and suggest that continued application of copper to agricultural soils poses a significant risk to successful rhizosphere colonization by Pseudomonas spp.  相似文献   
153.
We combine structural limb data and behavioral data for free-ranging chimpanzees from Ta? (Ivory Coast) and Mahale National Parks (Tanzania) to begin to consider the relationship between individual variation in locomotor activity and morphology. Femoral and humeral cross sections of ten individuals were acquired via computed tomography. Locomotor profiles of seven individuals were constructed from 3387 instantaneous time-point observations (87.4 hours). Within the limited number of suitable chimpanzees, individual variation in locomotor profiles displayed neither clear nor consistent trends with diaphyseal cross-sectional shapes. The percentages of specific locomotor modes did not relate well to diaphyseal shapes since neither infrequent nor frequent locomotor modes varied consistently with shapes. The percentage of arboreal locomotion, rather than estimated body mass, apparently had comparatively greater biological relevance to variation in diaphyseal shape. The mechanical consequences of locomotor modes on femoral and humeral diaphyseal shapes (e.g., orientation of bending strains) may overlap between naturalistic modes more than currently is recognized. Alternatively, diaphyseal shape may be unresponsive to mechanical demands of these specific locomotor modes. More data are needed in order to discern between these possibilities. Increasing the sample to include additional free-ranging chimpanzees, or primates in general, as well as devoting more attention to the mechanics of a greater variety of naturalistic locomotor modes would be fruitful to understanding the behavioral basis of diaphyseal shapes.  相似文献   
154.
155.
Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used for identification of emetic B. cereus strains. MC67 and MC118 produced cereulide at temperatures of as low as 8°C.  相似文献   
156.
Dendritic cells play critical roles in both innate and adaptive immunity, and their numerous functions are tightly linked to their maturation and activation status. Here, we characterize the murine dendritic cell line DC2.4 as a model for studying dendritic cell maturation and activation, and we evaluate the influence of melanoma tumor cells on these processes. Exposure of DC2.4 cells to the Toll-like receptor ligand lipopolysaccharide induces both maturation and activation of these cells, characterized by upregulation of costimulatory molecule expression and proinflammatory cytokine/chemokine production. This maturation and activation is suppressed by soluble factors derived from both the highly tumorigenic B16-F1 and the poorly tumorigenic D5.1G4 murine melanoma cell lines. Interestingly, the extent of DC2.4 immunosuppression by these melanomas correlates with their tumorigenicity, suggesting a potentially vital role for dendritic cell/tumor cell interactions in the regulation of anti-tumor immunity and tumor outgrowth.  相似文献   
157.
158.
The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the “slow boat” model being the most widely accepted, though other conjectures (i.e., the “express train” and “entangled bank” hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami.  相似文献   
159.
Mycophenolic acid (MPA) is a fungal secondary metabolite and the active component in several immunosuppressive pharmaceuticals. The gene cluster coding for the MPA biosynthetic pathway has recently been discovered in Penicillium brevicompactum, demonstrating that the first step is catalyzed by MpaC, a polyketide synthase producing 5-methylorsellinic acid (5-MOA). However, the biochemical role of the enzymes encoded by the remaining genes in the MPA gene cluster is still unknown. Based on bioinformatic analysis of the MPA gene cluster, we hypothesized that the step following 5-MOA production in the pathway is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from the extracted RNA. Heterologous coexpression of mpaC and the fusion gene mpaDE in the MPA-nonproducer Aspergillus nidulans resulted in the production of 5,7-dihydroxy-4-methylphthalide (DHMP), the second intermediate in MPA biosynthesis. Analysis of the strain coexpressing mpaC and the mpaD part of mpaDE shows that the P450 catalyzes hydroxylation of 5-MOA to 4,6-dihydroxy-2-(hydroxymethyl)-3-methylbenzoic acid (DHMB). DHMB is then converted to DHMP, and our results suggest that the hydrolase domain aids this second step by acting as a lactone synthase that catalyzes the ring closure. Overall, the chimeric enzyme MpaDE provides insight into the genetic organization of the MPA biosynthesis pathway.  相似文献   
160.
The PR10 family protein Fra a 1E from strawberry (Fragaria x ananassa) is down-regulated in white strawberry mutants, and transient RNAi (RNA interference)-mediated silencing experiments confirmed that Fra a 1 is involved in fruit pigment synthesis. In the present study, we determined the solution structure of Fra a 1E. The protein fold is identical with that of other members of the PR10 protein family and consists of a seven-stranded antiparallel β-sheet, two short V-shaped α-helices and a long C-terminal α-helix that encompass a hydrophobic pocket. Whereas Fra a 1E contains the glycine-rich loop that is highly conserved throughout the protein family, the volume of the hydrophobic pocket and the size of its entrance are much larger than expected. The three-dimensional structure may shed some light on its physiological function and may help to further understand the role of PR10 proteins in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号