首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   93篇
  2023年   4篇
  2022年   8篇
  2021年   37篇
  2020年   16篇
  2019年   20篇
  2018年   27篇
  2017年   11篇
  2016年   35篇
  2015年   70篇
  2014年   68篇
  2013年   101篇
  2012年   127篇
  2011年   120篇
  2010年   63篇
  2009年   49篇
  2008年   83篇
  2007年   58篇
  2006年   69篇
  2005年   77篇
  2004年   47篇
  2003年   45篇
  2002年   32篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1979年   3篇
  1976年   2篇
  1973年   1篇
  1963年   1篇
  1960年   2篇
  1959年   2篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1266条查询结果,搜索用时 453 毫秒
131.
We report the first study of the relation between the wavelength of maximum absorbance (λmax) and the photoactivation energy (E a) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments (“Sea” and “Lake”) with porphyropsins peaking at λmax=529 nm and 554 nm, respectively. The estimation of E a was based on measurement of temperature effects on the spectral sensitivity of the eye. In accordance with theory (Stiles in Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers’ Co., London, 1948), relative sensitivity to long wavelengths increased with rising temperature. The estimates calculated from this effect are E a,529=47.8±1.8 kcal/mol and E a,554=41.5±0.7 kcal/mol (different at P<0.01). Thus the red-shift of λmax in the “Lake” population, correlating with the long-wavelength dominated light environment, is achieved by changes in the opsin that decrease the energy gap between the ground state and the first excited state of the chromophore. We propose that this will carry a cost in terms of increased thermal noise, and that evolutionary adaptation of the visual pigment to the light environment is directed towards maximizing the signal-to-noise ratio rather than the quantum catch.  相似文献   
132.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   
133.
BACKGROUND: In acute myocardial infarction (AMI) treated with percutaneous coronary intervention (PCI), myocardial injury results from complex processes during both ischemia and reperfusion. Release of reactive oxygen species (ROS) may contribute to the accumulated myocardial damage. AIMS: To examine by frequent sampling of peripheral blood oxidative stress and early inflammation in patients undergoing primary PCI for AMI. Secondly, to assess whether a correlation exists between these parameters and the extent of myocardial damage. METHODS: Sixteen patients undergoing primary PCI within 6 h of AMI onset were included. Peripheral blood was sampled at start of procedure (t0) and repeatedly over 24 h following reperfusion. Main plasma analyses were: 8-iso-PGF2alpha (oxidative stress), 15-keto-dihydro-PGF2alpha (cyclooxygenase-mediated inflammation); and troponin-T (myocardial injury). Additional analyses included: total antioxidant status (TAS); vitamins; hsCRP and lipids. RESULTS: 8-Iso-PGF2alpha increased following restoration of blood flow, returned to t0 values after 3 h and was reduced below t0 the following day. TAS decreased significantly from t0 to the next day. There was no significant correlation between 8-iso-PGF2alpha and troponin T values. 15-Keto-dihydro-PGF2alpha was elevated during the first hour. There was a major rise in hsCRP after 24 h. CONCLUSION: Following reperfusion by primary PCI in AMI, oxidative stress and an inflammatory response are induced immediately. A rise in 8-iso-PGF2a during ischemia indicate that ROS generation may also take place during severely reduced coronary blood flow and hypoxia. No direct relationship between 8-iso-PGF2alpha or 15-keto-dihydro-PGF2alpha and troponin T was evident. The present study adds to the increasingly complex pathophysiological roles of ROS acting both as signal molecules and as mediators of tissue injury.  相似文献   
134.
The fatty acid degradation and synthesis pathways consist of the same four chemical transformations. These transformations are facilitated by conjugating the fatty acid, via a thioester bond, to coenzyme A or acyl carrier protein in, respectively, the degradation and synthesis pathways. These pathways are compartmentalized in the peroxisomes, mitochondria and cytosol of eukaryotic cells. Current structural knowledge of the enzymes comprising these pathways shows that the approximately 130 entries in the RCSB Protein Data Bank can be grouped into seven superfamilies. Multifunctional enzymes are important in both pathways.  相似文献   
135.
136.
Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers in a monoclinic cholesterol.H(2)O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before transformation to the triclinic phase of cholesterol.H(2)O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol.H(2)O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed.  相似文献   
137.
138.
During co-incubation of human inter-alpha-inhibitor (IalphaI) and human tumor necrosis factor-stimulated gene 6 protein (TSG-6) SDS-stable interactions are formed between the two proteins. We have analyzed the products of this reaction and characterized the mechanism of complex formation. Following the incubation seven new bands not previously identified were apparent in SDS-PAGE. Three of these bands did not contain TSG-6, including heavy chain (HC)1.bikunin, HC2.bikunin, and free bikunin. In addition high molecular weight complexes composed of the same components as I alpha I, including HC1, HC2, and bikunin, were formed. The formation of these complexes was prevented by the addition of hyaluronan. The cross-links stabilizing these complexes displaying properties similar to the protein-glycosaminoglycan-protein (PGP) cross-link. The TSG-6-containing SDS-stable complexes were composed of HC1.TSG-6 or HC2.TSG-6 exclusively. Both glycosylated and non-glycosylated TSG-6 participated in the complex formation. The HC.TSG-6 cross-links were different from the PGP cross-link and were determined to be ester bonds between the alpha-carbonyl of the C-terminal Asp of the heavy chain and most likely a hydroxyl group containing the TSG-6 residue. The mechanism involved cleaving the PGP cross-link of I alpha I during a transesterification reaction. A TSG-6 hydroxyl group reacts with the ester bond between the alpha-carbonyl of the C-terminal Asp residues of HC1 or HC2 and carbon-6 of an internal N-acetylgalactosamine of the chondroitin-4-sulfate chain. An intermediate is formed resulting in a partitioning of the reaction between HC(1 or 2).TSG-6 complexes and transfer of HC(1 or 2) to the chondroitin via competing pathways.  相似文献   
139.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   
140.
The cellular compartment and purpose of the proteolytic processing of the prion protein (PrP) are still under debate. We have studied ovine PrP constructs expressed in four cell lines; murine neuroblastoma cells (N2a), human neuroblastoma cells (SH-SY5Y), dog kidney epithelial cells (MDCK), and human furin-deficient colon cancer cells (LoVo). Cleavage of PrP in LoVo cells indicates that the processing is furin independent. Neither is it reduced by some inhibitors of lysosomal proteinases, proteasomes or zinc-metalloproteinases, but incubation with bafilomycin A1, an inhibitor of vacuolar H+/ATPases, increases the amount of uncleaved PrP in the apical medium of MDCK cells. Mutations affecting the putative cleavage site near amino acid 113 reveal that the cleavage is independent of primary structure at this site. Absence of glycosylphosphatidylinositol anchor and glycan modifications does not influence the proteolytic processing of PrP. Our data indicate that PrP is cleaved during transit to the cell membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号