首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   93篇
  2023年   4篇
  2022年   8篇
  2021年   37篇
  2020年   16篇
  2019年   20篇
  2018年   27篇
  2017年   11篇
  2016年   35篇
  2015年   70篇
  2014年   68篇
  2013年   101篇
  2012年   127篇
  2011年   120篇
  2010年   63篇
  2009年   49篇
  2008年   83篇
  2007年   58篇
  2006年   69篇
  2005年   77篇
  2004年   47篇
  2003年   45篇
  2002年   32篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1979年   3篇
  1976年   2篇
  1973年   1篇
  1963年   1篇
  1960年   2篇
  1959年   2篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1266条查询结果,搜索用时 265 毫秒
111.
112.
Unaccustomed high-intensity eccentric exercise (ECC) can provoke muscle damage including several days of muscle force loss. Post-exercise dietary supplementation may provide a strategy to accelerate rate of force regain by affecting mechanisms related to muscle protein turnover. The aim of the current study was to investigate if protein signaling mechanisms involved in muscle protein turnover would be differentially affected by supplementation with either whey protein hydrolysate and carbohydrate (WPH+CHO) versus isocaloric carbohydrate (CHO) after muscle-damaging ECC. Twenty-four young healthy participants received either WPH+CHO (n = 12) or CHO supplements (n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to, at 3 h and at 24, 48, 96 and/or 168 h post-exercise, muscle strength, muscle soreness, and Akt-mTOR and FOXO signaling proteins, were measured in an ECC exercising leg and in the contralateral non-exercise control leg (CON). After ECC, muscle force decreased by 23–27 % at 24 h post-exercise, which was followed by gradual, although not full recovery at 168 h post-exercise, with no differences between supplement groups. Phosphorylation of mTOR, p70S6K and rpS6 increased and phosphorylation of FOXO1 and FOXO3 decreased in the ECC leg, with no differences between supplement groups. Phosphorylation changes were also observed for rpS6, FOXO1 and FOXO3a in the CON leg, suggesting occurrence of remote tissue effects. In conclusion, divergent dietary supplementation types did not produce differences in signaling for muscle turnover during recovery from muscle-damaging exercise.  相似文献   
113.
Although species and their interactions in unison represent biodiversity and all the ecological and evolutionary processes associated with life, biotic interactions have, contrary to species, rarely been integrated into the concepts of spatial β-diversity. Here, we examine β-diversity of ecological networks by using pollination networks sampled across the Canary Islands. We show that adjacent and distant communities are more and less similar, respectively, in their composition of plants, pollinators and interactions than expected from random distributions. We further show that replacement of species is the major driver of interaction turnover and that this contribution increases with distance. Finally, we quantify that species-specific partner compositions (here called partner fidelity) deviate from random partner use, but vary as a result of ecological and geographical variables. In particular, breakdown of partner fidelity was facilitated by increasing geographical distance, changing abundances and changing linkage levels, but was not related to the geographical distribution of the species. This highlights the importance of space when comparing communities of interacting species and may stimulate a rethinking of the spatial interpretation of interaction networks. Moreover, geographical interaction dynamics and its causes are important in our efforts to anticipate effects of large-scale changes, such as anthropogenic disturbances.  相似文献   
114.
115.
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.  相似文献   
116.
117.
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ−/− cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.  相似文献   
118.
119.
The effect of pH on flocculation was studied using the diatom Phaeodactylum tricornutum and the green algae Scenedesmus cf. obliquus as surrogate species. There was a distinct, species-specific threshold of pH where flocculation started. P. tricornutum started to flocculate at pH 10.5 and S. cf. obliquus at pH 11.3. Above this threshold, settling rates up to 360 cm h−1 were observed for P. tricornutum and the concentrating factor was up to 60-fold. The combined effect of pH, turbulence, and cell density on flocculation of P. tricornutum was additionally studied in a factorial 53-design experiment. pH was the most important factor affecting flocculation, but at the pH threshold (pH 10.5), the concentrating factor was increased by increasing cell density and turbulence. Algae increases the pH during photosynthesis, and the P. tricornutum and S. cf. obliquus cultures increased the pH to a maximum of 10.8 and 9.5, respectively, after discontinuing the CO2 supply. For P. tricornutum, this was above the flocculation threshold, and rapid settling of this species due to increased pH was observed in a matter of hours after the CO2 supply was turned off. This could be used as a simple, low-cost, initial dewatering step for this species.  相似文献   
120.
Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the inhibitors are either previously reported inhibitors of related enzymes or compounds derived from these. Development in terms of selectivity and potency is still pertinent. Several reports on the development of functional assays have been published.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号