首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   10篇
  125篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   8篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   5篇
  2000年   9篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有125条查询结果,搜索用时 46 毫秒
61.
62.
The p97-Ufd1-Npl4 ATPase complex is associated with the response to DNA damage and replication stress, but how its inactivation leads to manifestation of chromosome instability is unclear. Here, we show that p97-Ufd1-Npl4 has an additional direct role in the G2/M checkpoint. Upon DNA damage, p97-Ufd1-Npl4 binds CDC25A downstream of ubiquitination by the SCF-βTrCP ligase and facilitates its proteasomal degradation. Depletion of Ufd1-Npl4 leads to G2/M checkpoint failure due to persistent CDC25 activity and propagation of DNA damage into mitosis with deleterious effects on chromosome segregation. Thus, p97-Ufd1-Npl4 is an integral part of G2/M checkpoint signaling and thereby suppresses chromosome instability.  相似文献   
63.
There are two distinct pathways for disulfide formation in prokaryotes. The DsbA-DsbB pathway introduces disulfide bonds de novo, while the DsbC-DsbD pathway functions to isomerize disulfides. One of the key questions in disulfide biology is how the isomerase pathway is kept separate from the oxidase pathway in vivo. Cross-talk between these two systems would be mutually destructive. To force communication between these two systems we have selected dsbC mutants that complement a dsbA null mutation. In these mutants, DsbC is present as a monomer as compared with dimeric wild-type DsbC. Based on these findings we rationally designed DsbC mutants in the dimerization domain. All of these mutants are able to rescue the dsbA null phenotype. Rescue depends on the presence of DsbB, the native re-oxidant of DsbA, both in vivo and in vitro. Our results suggest that dimerization acts to protect DsbC's active sites from DsbB-mediated oxidation. These results explain how oxidative and reductive pathways can co-exist in the periplasm of Escherichia coli.  相似文献   
64.
The focal extracellular potential (FEP) described in this study is an electrophysiological signal related to the transmembrane potential (V(m)) of cardiac myocytes that avoids the mechanical fragility, interference with contraction, and intracellular contact associated with conventional whole cell recording. One end of a frog ventricular myocyte was secured into a glass holding pipette. The FEP was measured differentially between this pipette and a bath pipette while the cell was voltage- or current-clamped by a third whole cell pipette. The FEP appeared as an amplitude-truncated action potential, while FEP duration accurately reflected the action potential duration (APD) at 90% repolarization (APD(90)). FEP magnitude increased as the holding pipette K(+) concentration ([K(+)]) was increased. The FEP-voltage relation was quasi-linear at negative V(m) with a slope that increased with elevated holding pipette [K(+)]. Increasing the membrane conductance inside the holding pipette by adding amphotericin B or cromakalim linearized the FEP-voltage relation across all V(m). The FEP accurately reported electrical activation and APD(90) during changes of stimulation frequency and episodes of cellular stretch.  相似文献   
65.
Hydrogen peroxide (H2O2) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2O2. Here, we employed a genetically encoded high‐affinity H2O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria‐released H2O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2O2 handling and explains previously observed differences between cell types. Our data suggest that H2O2‐mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions.  相似文献   
66.
H Dodemont  D Riemer    K Weber 《The EMBO journal》1990,9(12):4083-4094
The structure of the single gene encoding the cytoplasmic intermediate filament (IF) proteins in non-neuronal cells of the gastropod Helix aspersa is described. Genomic and cDNA sequences show that the gene is composed of 10 introns and 11 exons, spanning greater than 60 kb of DNA. Alternative RNA processing accounts for two mRNA families which encode two IF proteins differing only in their C-terminal sequence. The intron/exon organization of the Helix rod domain is identical to that of the vertebrate type III IF genes in spite of low overall protein sequence homology and the presence of an additional 42 residues in coil 1b of the invertebrate sequence. Intron position homology extends to the entire coding sequence comprising both the rod and tail domains when the invertebrate IF gene is compared with the nuclear lamin LIII gene of Xenopus laevis presented in the accompanying report of Döring and Stick. In contrast the intron patterns of the tail domains of the invertebrate IF and the lamin genes differ from those of the vertebrate type III genes. The combined data are in line with an evolutionary descent of cytoplasmic IF proteins from a nuclear lamin-like progenitor and suggest a mechanism for this derivation. The unique position of intron 7 in the Helix IF gene indicates that the archetype IF gene arose by the elimination of the nuclear localization sequence due to the recruitment of a novel splice site. The presumptive structural organization of the archetype IF gene allows predictions with respect to the later diversification of metazoan IF genes. Whereas models proposing a direct derivation of neurofilament genes seem unlikely, the earlier speculation of an mRNA transposition mechanism is compatible with current results.  相似文献   
67.
The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady‐state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1‐deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed‐disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI‐family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1‐ and glutathione disulphide‐mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.  相似文献   
68.
Kojer K  Bien M  Gangel H  Morgan B  Dick TP  Riemer J 《The EMBO journal》2012,31(14):3169-3182
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.  相似文献   
69.
A functional model for the aspartate/glutamate carrier of the inner mitochondrial membrane was established based on a kinetic evaluation of this transporter. Antiport kinetics were measured in proteoliposomes that contained partially purified carrier protein of definite transmembrane orientation (Dierks, T. and Kr?mer, R. (1988) Biochim. Biophys. Acta 937, 122-126). Bireactant initial velocity analyses of the counterexchange reaction were carried out varying substrate concentrations both in the internal and the external compartment. The kinetic patterns obtained were inconsistent with a pong-pong mechanism; rather they demonstrated the formation of a ternary complex as a consequence of sequential binding of one internal and one external substrate molecule to the carrier. Studies on transport activity in the presence of aspartate and glutamate in the same compartment (formally treated as substrate inhibition) clearly indicated that during exchange only one form of the carrier at either membrane surface exposes its binding sites, for which the two different substrates compete. In the deenergized state (pH 6.5) both substrates were translocated at about the same rate. Aspartate/glutamate antiport became asymmetric if a membrane potential was imposed, due to the electrogenic nature of the heteroexchange resulting from proton cotransport together with glutamate. Investigation of the electrical properties of aspartate/aspartate homoexchange led to the conclusion that the translocating carrier-substrate intermediate exhibits a transmembrane symmetry with respect to the (negative) charge, which again only is conceivable assuming a ternary complex. Thus, an antiport model is outlined that shows the functional complex of the carrier with two substrate molecules bound, one at either side of the membrane. The conformational change associated with the transition of both substrate molecules across the membrane then occurs in a single step. Furthermore the model implicates a distinct proton binding site, which is derived from the different influence of H+ concentration observed on transport affinity and transport velocity, respectively, when glutamate is used as a substrate.  相似文献   
70.
We describe the isolation and characterization of a full-length cDNA corresponding to the larger non-neuronal (nn) intermediate filament (IF) protein of the gastropod Aplysia californica. Comparison of the sequences of the nn-IF proteins from Aplysia californica and Helix aspersa shows a strong evolutionary drift. At a 72% sequence identity level, the IF proteins of Opisthobranchia and Pulmonata show a larger distance than vimentins from Xenopus and mammals. The sequence comparison of the two snail proteins provides an important step in understanding the epitope of the monoclonal antibody IFA mapped by previous studies to the consensus sequence at the carboxy-terminal end of the rod domain of IF proteins. We identify for the first time in a naturally occurring IF protein a single amino acid exchange which leads to the loss of the epitope. The consensus sequence YRKLLEGEE present in IFA-positive proteins such as the Helix IF protein is changed in the IFA-negative Aplysia protein only by the conservative substitution of the arginine (R) by a lysine (K). Thus, the IFA epitope is not a necessity of IF structure, and its presence or absence on different IF proteins reflects only small changes in an otherwise conserved consensus sequence. Consequently, lack of IFA reactivity does not exclude the presence of IF. This result predicts that IF are much more universally expressed in lower eukaryotes than currently expected from immunological results with the monoclonal antibody IFA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号