首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   20篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   12篇
  2017年   4篇
  2016年   4篇
  2015年   13篇
  2014年   9篇
  2013年   17篇
  2012年   20篇
  2011年   33篇
  2010年   23篇
  2009年   14篇
  2008年   23篇
  2007年   19篇
  2006年   17篇
  2005年   22篇
  2004年   23篇
  2003年   16篇
  2002年   19篇
  2001年   1篇
  2000年   4篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1995年   6篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   3篇
  1978年   2篇
  1976年   1篇
排序方式: 共有355条查询结果,搜索用时 31 毫秒
71.
Summary The solution structure of gurmarin was studied by two-dimensional proton NMR spectroscopy at 600 MHz. Gurmarin, a 35-amino acid residue polypeptide recently discovered in an Indian-originated tree Gymnema sylvestre, selectively suppresses the neural responses of rat to sweet taste stimuli. Sequence-specific protons. The three-dimensional solution structure was determined by simulated-annealing calculations on the basis of 135 interproton distance constraints derived from NOEs, six distance constraints for three hydrogen bonds and 16 dihedral angle constraints derived from coupling constants. A total of 10 structures folded into a well-defined structure with a triple-stranded antiparallel -sheet. The average rmsd values between any two structures were 1.65±0.39 Å for the backbone atoms (N, C, C) and 2.95±0.27 Å for all heavy atoms. The positions of the three disulfide bridges, which could not be deterermined chemically, were estimated to be Cys3–Cys18, Cys10–Cys23 and Cys17–Cys33 on the basis of the NMR distance constraints. This disulfide bridge pattern in gurmarin turned out to be analogous to that in -conotoxin and Momordica charantia trypsin inhibitor-II, and the topology of folding was the same as that in -conotoxin.Abbreviations DQF-COSY double-quantum-filtered correlated spectroscopy - HOHAHA homonuclear Hartmann-Hahn spectroscopy - NOESY nuclear Overhauser enhancement spectroscopy - ppm parts per million; rmsd, root-mean-square deviation - TSP 3-(trimethylsilyl)-2,2,3,3-tetradeutero-propionate  相似文献   
72.
To evaluate DNA fingerprinting as an epidemiologic tool, pulsed-field gel electrophoresis (PFGE) was performed on isolates of Salmonella, including S. typhimurium, S. thompson, and S. enteritidis. Chromosomal DNA was digested with the restriction endonucleases Bln I and Xba I. The patterns of S. thompson and S. typhimurium isolates from various sources were different from one another. There was no correlation between the phage type and the digestion pattern of S. enteritidis isolates. Some strains belonging to one phage type were distinguished by their PFGE pattern in this study. These results suggest that the Bln I and Xba I digestion patterns of chromosomal DNA are useful for epidemiological analysis of an outbreak of Salmonella infection or food poisoning.  相似文献   
73.
74.
Of some 350 microorganisms screened, four strains of Pithomyces species were found to carry out regio-selective hydroxylation of patchoulol, a sesquiterpene, to 10-hydroxypatchoulol: Pithomyces sp. NRJ201, P. chartarum NRJ210, and, to a lesser extent, P. cynodontis ATCC 26150 and P. atro-olivaceus IFO 6651 were found to catalyze this reaction. A method has been developed by which 10-hydroxypatchoulol was obtained in 25 to 45% yields in 1- to 5-liter fermentation jars at 2 to 4 g of patchoulol per liter and isolated as pure material in 30% yields.  相似文献   
75.
Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to the midzone independently of myosin II heavy chain during cytokinesis in cultured mammalian cells. However, the mechanism underlying the distinct localization of 1P- and 2P-MRLC during cytokinesis is unknown. Here, we showed that depletion of the Rho signaling proteins MKLP1, MgcRacGAP, or ECT2 inhibited the localization of 1P-MRLC to the contractile ring but not the localization of 2P-MRLC to the midzone. In contrast, depleting or inhibiting a midzone-localizing kinase, Aurora B, perturbed the localization of 2P-MRLC to the midzone but not the localization of 1P-MRLC to the contractile ring. We did not observe any change in the localization of phosphorylated MRLC in myosin light-chain kinase (MLCK)-inhibited cells. Furrow regression was observed in Aurora B- and 2P-MRLC-inhibited cells but not in 1P-MRLC-perturbed dividing cells. Furthermore, Aurora B bound to 2P-MRLC in vitro and in vivo. These results suggest that Aurora B, but not Rho/MLCK signaling, is essential for the localization of 2P-MRLC to the midzone in dividing HeLa cells.  相似文献   
76.
Mutations in the second EF-hand (D61N, D63N, D65N, and E72A) of S100B were used to study its Ca2 + binding and dynamic properties in the absence and presence of a bound target, TRTK-12. With D63NS100B as an exception (D63NKD = 50 ± 9 μM), Ca2 + binding to EF2-hand mutants were reduced by more than 8-fold in the absence of TRTK-12 (D61NKD = 412 ± 67 μM, D65NKD = 968 ± 171 μM, and E72AKD = 471 ± 133 μM), when compared to wild-type protein (WTKD = 56 ± 9 μM). For the TRTK-12 complexes, the Ca2 +-binding affinity to wild type (WT + TRTKKD = 12 ± 10 μM) and the EF2 mutants was increased by 5- to 14-fold versus in the absence of target (D61N + TRTKKD = 29 ± 1.2 μM, D63N + TRTKKD = 10 ± 2.2 μM, D65N + TRTKKD = 73 ± 4.4 μM, and E72A + TRTKKD = 18 ± 3.7 μM). In addition, Rex, as measured using relaxation dispersion for side‐chain 15N resonances of Asn63 (D63NS100B), was reduced upon TRTK-12 binding when measured by NMR. Likewise, backbone motions on multiple timescales (picoseconds to milliseconds) throughout wild type, D61NS100B, D63NS100B, and D65NS100B were lowered upon binding TRTK-12. However, the X-ray structures of Ca2 +-bound (2.0 Å) and TRTK-bound (1.2 Å) D63NS100B showed no change in Ca2 + coordination; thus, these and analogous structural data for the wild-type protein could not be used to explain how target binding increased Ca2 +-binding affinity in solution. Therefore, a model for how S100B–TRTK‐12 complex formation increases Ca2 + binding is discussed, which considers changes in protein dynamics upon binding the target TRTK-12.  相似文献   
77.
Forest ecosystems are self-fertilizing systems, and development of forest stands depends on nutrient supply via biogeochemical cycling within the ecosystem. Therefore, it is important to clarify the nutrient cycle mediating growth and development. In addition, long-term hydrochemical monitoring is needed to understand the influence of environmental changes on biogeochemical cycling in forest ecosystems. The Oyasan Experimental Forest Watershed (OEFW) is located in the Field Museum Oyasan, the university forest of Tokyo University of Agriculture and Technology, in Gunma prefecture, Japan. OEFW comprises two small adjacent forested watersheds—A-watershed and B-watershed—with respective areas of 1.3 and 1.8 ha. A-watershed is a reestablished forest planted with sugi (Japanese cedar; Cryptomeria japonica) and hinoki (Japanese cypress; Chamaecyparis obtusa) in 1976, and has been managed intensively with fertilizer application. By contrast, B-watershed is an established forest planted with sugi and hinoki in 1907. No forest practices have been carried out except for thinning of suppressed trees in 1983. However, the sugi plantation on the lowest slope (18% of the watershed area) was cut in 2000, and sugi was replanted the following year. In this data paper, we present data on the daily precipitation, discharge, pH, and concentrations of major nutrients (Ca2+, Mg2+, K+, Na+, NH4 +, Cl, NO3 , and SO4 2−) in rainwater and stream water since November 1978. The arithmetical mean pH of precipitation, stream water in A- and B-watershed from the beginning of the monitoring to the present were 4.77 ± 0.67, 6.85 ± 0.41 and 6.88 ± 0.36 (average ± SD), respectively. The arithmetical mean concentrations in precipitation in mmolc L−1 were 0.030 ± 0.030 for Ca2+, 0.010 ± 0.011 for Mg2+, 0.009 ± 0.013 for K+, 0.020 ± 0.024 for Na+, 0.035 ± 0.041 for NH4 +, 0.026 ± 0.029 for Cl, 0.033 ± 0.038 for NO3 , and 0.046 ± 0.043 for SO4 2−. The mean concentrations in stream water in A-watershed were 0.180 ± 0.032 for Ca2+, 0.073 ± 0.013 for Mg2+, 0.018 ± 0.009 for K+, 0.182 ± 0.024 for Na+, 0.010 ± 0.010 for NH4 +, 0.060 ± 0.008 for Cl, 0.111 ± 0.038 for NO3 , and 0.074 ± 0.012 for SO4 2−; whereas for B-watershed the mean concentrations were 0.169 ± 0.025 for Ca2+, 0.079 ± 0.016 for Mg2+, 0.018 ± 0.005 for K+, 0.192 ± 0.026 for Na+, 0.010 ± 0.010 for NH4 +, 0.065 ± 0.010 for Cl, 0.093 ± 0.025 for NO3 , and 0.087 ± 0.011 for SO4 2−.  相似文献   
78.
79.
The transverse relaxation rate, R2, measured as a function of the effective field (R2 dispersion) using a Carr-Purcell-Meiboom-Gill (CPMG) pulse train, is well suited to detect conformational exchange in proteins. The dispersion data are commonly fitted by a two-site (sites a and b) exchange model with four parameters: the relative population, pa, the difference in chemical shifts of the two sites, δω, the correlation time for exchange, τex, and the intrinsic relaxation rate (i.e., transverse relaxation rate in the absence of chemical exchange), R20. Although the intrinsic relaxation rates of the two sites, R20a and R20b, can differ, they are normally assumed to be the same (i.e., R20a = R20b = R20) when fitting dispersion data. The purpose of this investigation is to determine the magnitudes of the errors in the optimized exchange parameters that are introduced by the assumption that R20a = R20b. In order to accomplish this goal, we first generated synthetic constant-time CPMG R2 dispersion data assuming two-site exchange with R20a ≠ R20b, and then fitted the synthetic data assuming two-site exchange with R20 = R20a = R20b. Although all the synthetic data generated assuming R20a ≠ R20b were well fitted (assuming R20a = R20b), the optimized values of pa and τ ex differed from their true values, whereas the optimized values of δω values did not. A theoretical analysis using the Carver–Richards equation explains these results, and yields simple, general equations for estimating the magnitudes of the errors in the optimized parameters, as a function of ( R20a − R20b).  相似文献   
80.
In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s?1. The difference increases significantly when CPMG pulses are miscalibrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号