全文获取类型
收费全文 | 510篇 |
免费 | 17篇 |
专业分类
527篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 9篇 |
2020年 | 2篇 |
2019年 | 13篇 |
2018年 | 12篇 |
2017年 | 7篇 |
2016年 | 7篇 |
2015年 | 18篇 |
2014年 | 13篇 |
2013年 | 27篇 |
2012年 | 28篇 |
2011年 | 43篇 |
2010年 | 35篇 |
2009年 | 22篇 |
2008年 | 32篇 |
2007年 | 29篇 |
2006年 | 21篇 |
2005年 | 28篇 |
2004年 | 30篇 |
2003年 | 23篇 |
2002年 | 21篇 |
2001年 | 7篇 |
2000年 | 9篇 |
1999年 | 15篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 6篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1992年 | 9篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1981年 | 3篇 |
1979年 | 3篇 |
1978年 | 5篇 |
1976年 | 1篇 |
1971年 | 5篇 |
1967年 | 1篇 |
排序方式: 共有527条查询结果,搜索用时 15 毫秒
91.
A new procedure for estimating fish species richness in open or semi-open habitats is presented with unpublished data on the coral-reef fish assemblages of Raja Ampat, eastern Indonesia, known as the centre of marine biodiversity in the western Pacific. 相似文献
92.
Thomas W. Gould Michael J. Burek Rieko Ishihara Albert C. Lo David Prevette Ronald W. Oppenheim 《Developmental neurobiology》1999,41(4):585-595
The regulation of survival of spinal motoneurons (MNs) has been shown to depend during development and after injury on a variety of neurotrophic molecules produced by skeletal muscle target tissue. Increasing evidence also suggests that other sources of trophic support prevent MNs from undergoing naturally occurring or injury‐induced death. We have examined the role of endogenous and exogenous androgens on the survival of developing avian lumbar spinal MNs during their period of programmed cell death (PCD) between embryonic day (E)6 and E11 or after axotomy on E12. We found that although treatment with testosterone, dihydrotestosterone (DHT), or the androgen receptor antagonist flutamide (FL) failed to affect the number of these MNs during PCD, administration of DHT from E12 to E15 following axotomy on E12 significantly attenuated injury‐induced MN death. This effect was inhibited by cotreatment with FL, whereas treatment with FL alone did not affect MN survival. Finally, we examined the spinal cord at various times during development and following axotomy on E12 for the expression of androgen receptor using the polyclonal PG‐21 antibody. Our results suggest that exogenously applied androgens are capable of rescuing MNs from injury‐induced cell death and that they act directly on these cells via an androgen receptor‐mediated mechanism. By contrast, endogenous androgens do not appear to be involved in the regulation of normal PCD of developing avian MNs. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 585–595, 1999 相似文献
93.
Shigero Tamba Rieko Yodoi Kazushi Morimoto Tomoaki Inazumi Mamiko Sukeno Eri Segi-Nishida Yasushi Okuno Gozoh Tsujimoto Shuh Narumiya Yukihiko Sugimoto 《Biochimie》2010
To understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2−/− cumuli before and after ovulation by using microarrays. We prepared cumulus cells from mice just before and 3, 9 and 14 h after human chorionic gonadotropin injection. Key genes including cAMP-related and epidermal growth factor (EGF) genes, as well as extracellular matrix- (ECM-) related and chemokine genes were up-regulated in WT cumuli at 3 h and 14 h, respectively. Ptger2 deficiency differently affected the expression of many of the key genes at 3 h and 14 h. These results indicate that the gene expression profile of cumulus cells greatly differs before and after ovulation, and in each situation, PGE2-EP2 signaling plays a critical role in cAMP-regulated gene expression in the cumulus cells under physiological conditions. 相似文献
94.
Takehiro M Fujimoto S Shimodahira M Shimono D Mukai E Nabe K Radu RG Kominato R Aramaki Y Seino Y Yamada Y 《American journal of physiology. Endocrinology and metabolism》2005,288(2):E372-E380
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria. 相似文献
95.
96.
Inoue K Furukawa T Kumada T Yamada J Wang T Inoue R Fukuda A 《The Journal of biological chemistry》2012,287(25):20839-20850
GABA inhibits mature neurons and conversely excites immature neurons due to lower K(+)-Cl(-) cotransporter 2 (KCC2) expression. We observed that ectopically expressed KCC2 in embryonic cerebral cortices was not active; however, KCC2 functioned in newborns. In vitro studies revealed that taurine increased KCC2 inactivation in a phosphorylation-dependent manner. When Thr-906 and Thr-1007 residues in KCC2 were substituted with Ala (KCC2T906A/T1007A), KCC2 activity was facilitated, and the inhibitory effect of taurine was not observed. Exogenous taurine activated the with-no-lysine protein kinase 1 (WNK1) and downstream STE20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress response 1 (OSR1), and overexpression of active WNK1 resulted in KCC2 inhibition in the absence of taurine. Phosphorylation of SPAK was consistently higher in embryonic brains compared with that of neonatal brains and down-regulated by a taurine transporter inhibitor in vivo. Furthermore, cerebral radial migration was perturbed by a taurine-insensitive form of KCC2, KCC2T906A/T1007A, which may be regulated by WNK-SPAK/OSR1 signaling. Thus, taurine and WNK-SPAK/OSR1 signaling may contribute to embryonic neuronal Cl(-) homeostasis, which is required for normal brain development. 相似文献
97.
98.
Amara CE Marcinek DJ Shankland EG Schenkman KA Arakaki LS Conley KE 《Methods (San Diego, Calif.)》2008,46(4):312-318
Mitochondria integrate the key metabolic fluxes in the cell. This role places this organelle at the center of cellular energetics and, hence, mitochondrial dysfunction underlies a growing number of human disorders and age-related degenerative diseases. Here we present novel analytical and technical methods for evaluating mitochondrial metabolism and (dys)function in human muscle in vivo. Three innovations involving advances in optical spectroscopy (OS) and magnetic resonance spectroscopy (MRS) permit quantifying key compounds in energy metabolism to yield mitochondrial oxidation and phosphorylation fluxes. The first of these uses analytical methods applied to optical spectra to measure hemoglobin (Hb) and myoglobin (Mb) oxygenation states and relative contents ([Hb]/[Mb]) to determine mitochondrial respiration (O2 uptake) in vivo. The second uses MRS methods to quantify key high-energy compounds (creatine phosphate, PCr, and adenosine triphosphate, ATP) to determine mitochondrial phosphorylation (ATP flux) in vivo. The third involves a functional test that combines these spectroscopic approaches to determine mitochondrial energy coupling (ATP/O2), phosphorylation capacity (ATPmax) and oxidative capacity (O2max) of muscle. These new developments in optical and MR tools allow us to determine the function and capacity of mitochondria noninvasively in order to identify specific defects in vivo that are associated with disease in human and animal muscle. The clinical implication of this unique diagnostic probe is the insight into the nature and extent of dysfunction in metabolic and degenerative disorders, as well as the ability to follow the impact of interventions designed to reverse these disorders. 相似文献
99.
Background
We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. 相似文献100.
Toshiyuki Suzuki Akira Miyazono Katsuhisa Baba Rieko Sugawara Takashi Kamiyama 《Harmful algae》2009,8(2):233-238
Quantification of diarrhetic shellfish poisoning (DSP) toxins (okadaic acid analogues), and other lipophilic toxins in single-cell isolates of the dinoflagellates Dinophysis fortii, D. acuminata, D. mitra, D. norvegica, D. tripos, D. infundibulus and D. rotundata, collected in coastal waters Hokkaido, Japan in 2005, was carried out by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Okadaic acid (OA), dinophysistoxin-1 (DTX1), 7-O-palmitoyldinophysistoxin-1 (DTX3), pectenotoxin-1 (PTX1), pectenotoxin-11 (PTX11), pectenotoxin-2 (PTX2), pectenotoxin-6 (PTX6), pectenotoxin-2 seco-acid (PTX2sa), yessotoxin (YTX) and 45-hydroxyyessotoxin (45-OHYTX) were quantified by LC–MS/MS. PTX2 was the dominant toxin in D. acuminata, D. norvegica and D. infundibulus whereas both DTX1 and PTX2 were the principal toxins in D. fortii. None of the toxins were detected in D. mitra, D. rotundata and D. tripos. These results suggest that D. fortii is the most important species responsible for DSP contamination of bivalves in Hokkaido. This is the first finding of PTX2 in D. infundibulus, and confirms the presence of PTX2 in Japanese D. acuminata and D. norvegica collected from natural seawater. 相似文献