首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   53篇
  2023年   8篇
  2022年   4篇
  2021年   12篇
  2020年   9篇
  2019年   8篇
  2018年   11篇
  2017年   9篇
  2016年   14篇
  2015年   30篇
  2014年   47篇
  2013年   41篇
  2012年   75篇
  2011年   52篇
  2010年   34篇
  2009年   26篇
  2008年   39篇
  2007年   39篇
  2006年   35篇
  2005年   24篇
  2004年   30篇
  2003年   20篇
  2002年   31篇
  2001年   5篇
  2000年   14篇
  1999年   5篇
  1998年   6篇
  1996年   6篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1983年   4篇
  1980年   4篇
  1979年   4篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   6篇
  1970年   5篇
  1969年   4篇
  1968年   2篇
  1967年   5篇
  1965年   2篇
  1964年   3篇
  1963年   3篇
  1962年   5篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
31.
Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.  相似文献   
32.
33.
34.
The Nucleolar Localization Elements (NoLEs) of Xenopus laevis U3 small nucleolar RNA (snoRNA) have been defined. Fluorescein-labeled wild-type U3 snoRNA injected into Xenopus oocyte nuclei localized specifically to nucleoli as shown by fluorescence microscopy. Injection of mutated U3 snoRNA revealed that the 5′ region containing Boxes A and A′, known to be important for rRNA processing, is not essential for nucleolar localization. Nucleolar localization of U3 snoRNA was independent of the presence and nature of the 5′ cap and the terminal stem. In contrast, Boxes C and D, common to the Box C/D snoRNA family, are critical elements for U3 localization. Mutation of the hinge region, Box B, or Box C′ led to reduced U3 nucleolar localization. Results of competition experiments suggested that Boxes C and D act in a cooperative manner. It is proposed that Box B facilitates U3 snoRNA nucleolar localization by the primary NoLEs (Boxes C and D), with the hinge region of U3 subsequently base pairing to the external transcribed spacer of pre-rRNA, thus positioning U3 snoRNA for its roles in rRNA processing.  相似文献   
35.
Soda lignin, dioxane lignin and milled lignin were isolated from Alfa grass (Stipatenacissima L.). The physico-chemical characterization of three different lignins: one industrial lignin precipitated from soda spent liquor and two lignin preparations isolated under laboratory conditions from Alfa grass (also know as Esparto grass) was performed. The structures of lignins were studied by three non-destructive (FT-IR, solid state 13C NMR and UV/visible spectroscopy) and two destructive (nitrobenzene oxidation and thermogravimetric analysis) methods. Elemental analysis and the methoxyl content determination were performed in order to determine the C9 formulae for the studied lignins. The total antioxidant capacity of the studied lignins has been determined and compared to commercial antioxidants commonly used in thermoplastic industry.  相似文献   
36.
High‐definition optical coherence tomography (HD‐OCT) scanners have recently been developed. We assessed micromorphological HD‐OCT correlates of benign naevi (BN) and malignant melanoma (MM). 28 BN and 20 MM were studied using HD‐OCT and histology. Epidermal honeycomb/cobblestone pattern, regular junctional cell nests, and edged papillae are more often observed in BN, whereas fusion of rete ridges, pagetoid cells and junctional and/or dermal nests with atypical cells are more frequently seen in MM. A high overlap of HD‐OCT features in BN and MM was observed and in 20% of MM we did not find evidence for malignancy in OCT images at all. Using HD‐OCT it is possible to visualize architectural and cellular alterations of melanocytic skin lesions. The overlap of HD‐OCT features seen in BN and MM and the absence of suspicious HD‐OCT features in some MM represents an important limitation of HD‐OCT affecting the sensitivity of HD‐OCT in diagnosing MM.

High‐definition optical coherence tomography and the corresponding vertically sectioned histology of a compound naevus.  相似文献   

37.
Functional magnetic resonance imaging (fMRI) and particularly resting state fMRI (rs-fMRI) is widely used to investigate resting state brain networks (RSNs) on the systems level. Echo planar imaging (EPI) is the state-of-the-art imaging technique for most fMRI studies. Therefore, improvements of EPI might lead to increased sensitivity for a large amount of studies performed every day. A number of developments to shorten acquisition time have been recently proposed and the multiband technique, allowing the simultaneous acquisition of multiple slices yielding an equivalent reduction of measurement time, is the most promising among them. While the prospect to significantly reduce acquisition time by means of high multiband acceleration factors (M) appears tempting, signal quality parameters and the sensitivity to detect common RSNs with increasing M-factor have only been partially investigated up to now. In this study, we therefore acquired rs-fMRI data from 20 healthy volunteers to systematically investigate signal characteristics and sensitivity for brain network activity in datasets with increasing M-factor, M = 2 − 4. Combined with an inplane, sensitivity encoding (SENSE), acceleration factor, S = 2, we applied a maximal acceleration factor of 8 (S2×M4). Our results suggest that an M-factor of 2 (total acceleration of 4) only causes negligible SNR decrease but reveals common RSN with increased sensitivity and stability. Further M-factor increase produced random artifacts as revealed by signal quality measures that may affect interpretation of RSNs under common scanning conditions. Given appropriate hardware, a mb-EPI sequence with a total acceleration of 4 significantly reduces overall scanning time and clearly increases sensitivity to detect common RSNs. Together, our results suggest mb-EPI at moderate acceleration factors as a novel standard for fMRI that might increase our understanding of network dynamics in healthy and diseased brains.  相似文献   
38.
Transient receptor potential canonical (TRPC) channels type 6 play an important role in the function of human podocytes. Diabetic nephropathy is characterized by altered TRPC6 expression and functions of podocytes. Thus, we hypothesized that high glucose modifies TRPC6 channels via increased oxidative stress and syndecan-4 (SDC-4) in human podocytes.  相似文献   
39.
Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure–activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei.  相似文献   
40.
Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface is supposed to be present as nanosized colloids. We therefore studied the role of colloidal iron oxides in microbial iron reduction. In batch growth experiments with Geobacter sulfurreducens, colloids of ferrihydrite (hydrodynamic diameter, 336 nm), hematite (123 nm), goethite (157 nm), and akaganeite (64 nm) were added as electron acceptors. The colloidal iron oxides were reduced up to 2 orders of magnitude more rapidly (up to 1,255 pmol h1 cell1) than bulk macroaggregates of the same iron phases (6 to 70 pmol h1 cell1). The increased reactivity was not only due to the large surface areas of the colloidal aggregates but also was due to a higher reactivity per unit surface. We hypothesize that this can be attributed to the high bioavailability of the nanosized aggregates and their colloidal suspension. Furthermore, a strong enhancement of reduction rates of bulk ferrihydrite was observed when nanosized ferrihydrite aggregates were added.Dissimilatory iron reduction is an important anaerobic respiration process in anoxic subsurface environments. However, the reactivity of ferric iron is mostly limited by the reduction kinetics of the poorly soluble, extracellular iron minerals. Electron transfer from microorganisms to iron oxides can occur via direct contact or by electron shuttling compounds (46). Transport of the electron shuttle between the redox partners is then assumed to occur via diffusion. For example, humic substances can serve as natural electron shuttles that can be reduced by microorganisms and subsequently chemically oxidized by the ferric oxide (18). Shewanella oneidensis excretes a flavin to stimulate hematite reduction, functioning in a similar manner (27). As another option, formation of conductive pili serving as nanowires was described as a possible way of transferring electrons to the oxide surface (15, 34). Nevertheless, direct attachment has been recognized as a major mode of accessing iron oxides as electron acceptors (12). Direct transfer between microbial outer membrane reductases and the ferric minerals, however, requires close contact of less than 14 Å between the terminal iron reductase on the cell surface and the iron oxide molecule at the mineral surface (19, 25), limiting the rates of electron transfer between cell and mineral.Several parameters have been discussed in this context as being decisive for the bioavailability and reactivity of iron oxides, such as, e.g., the mineral surface area (8, 41). Larger surface areas have been shown to be accompanied by higher initial reduction rates. Another parameter that might determine reactivity is the low solubility of ferric iron in water at neutral pH (20). Low solubility entails high crystallinity, which reduces reaction rates (4). Therefore, crystalline bulk iron phases such as goethite or hematite (9) are poorly reducible by microorganisms, in contrast to amorphous ferrihydrite (41). Naturally, well crystalline minerals have lower surface areas, and the effects of surface area and solubility cannot be distinguished sharply. Cell density, initial oxide and substrate concentrations, and ferrous iron adsorbed to the bulk mineral surface were also reported to control microbial reduction rates by exhibiting mutual saturation behavior in Michaelis-Menten-type kinetics (3, 22, 40).The latter studies also considered particle sizes, a parameter that has often been overlooked so far. All concepts mentioned above generally assumed a bulk state of the electron-accepting iron oxide. Indeed, iron oxides used in microbiological experiments appear mainly as coarse, flocculating macroaggregates, visible to the naked eye as sludge-like precipitates. In nature, however, nanosized iron oxides are abundant (32, 45) and play a vital role in many biogeochemical processes (2, 16, 28). Such nanoparticles may appear in stable colloidal suspension, even if aggregated as a stable cluster of multiple particles (13). Ferric oxide particles can appear in colloidal suspensions of different aggregate sizes and densities.Different particle aggregate sizes might influence the bioavailability of iron oxides in microbial reduction. Nanosized aggregates appearing in colloidal suspensions might be spatially more accessible for microorganisms than large aggregates flocculating as bulk phases. Therefore, the present study aims at assessing the reactivity and putative role of aggregate sizes of iron oxides in dissimilatory iron reduction. A set of ferrihydrite, hematite, goethite, and akaganeite colloids was compared to their respective noncolloidal bulk phases to evaluate this effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号