首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有35条查询结果,搜索用时 62 毫秒
31.
32.

Background

Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.

Results

A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.

Conclusions

New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-536) contains supplementary material, which is available to authorized users.  相似文献   
33.

Background  

There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility.  相似文献   
34.
Amoeboid organisms are phylogenetically diverse, some being more closely related to plants or metazoans than to each other. Amoeboid organisms are ecologically successful, having been isolated on all continents, including Antarctica, as well as being the main predators controlling bacterial populations in soil. The classification of these organisms has historically relied upon morphological characteristics. The application of electron microscopy, comparison of enzymic profiles after electrophoretic separation, and analysis of nucleic acid fractions have provided reliable bases for classifying amoeboid organisms. The extent of diversity of these organisms has been recognized, as methods to detect, culture, characterize and identify them has increased. It is reasonable to anticipate that the current 40 000 species of protists will increase substantially as amoeboid organisms are cultivated from poorly accessible niches and from extreme environs.  相似文献   
35.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号