首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   63篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   18篇
  2020年   6篇
  2019年   11篇
  2018年   13篇
  2017年   12篇
  2016年   20篇
  2015年   43篇
  2014年   45篇
  2013年   61篇
  2012年   77篇
  2011年   80篇
  2010年   50篇
  2009年   34篇
  2008年   72篇
  2007年   73篇
  2006年   71篇
  2005年   70篇
  2004年   66篇
  2003年   43篇
  2002年   42篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1981年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
121.
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.  相似文献   
122.
Bacterial lipoproteins are believed to exist in only one specific lipid-modified structure, such as the diacyl form or the triacyl form, in each bacterium. In the case of Staphylococcus aureus, recent extensive matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis revealed that S. aureus lipoproteins exist in the α-aminoacylated triacyl form. Here, we discovered conditions that induce the accumulation of diacyl lipoproteins that lack α-aminoacylation in S. aureus. The accumulation of diacyl lipoproteins required a combination of conditions, including acidic pH and a post-logarithmic-growth phase. High temperatures and high salt concentrations additively accelerated the accumulation of the diacyl lipoprotein form. Following a post-logarithmic-growth phase where S. aureus MW2 cells were grown at pH 6, SitC lipoprotein was found almost exclusively in its diacyl structure rather than in its triacyl structure. This is the first report showing that the environment mediates lipid-modified structural alterations of bacterial lipoproteins.  相似文献   
123.
124.
Synthesis and structure-activity relationship of a novel series of isoquinoline CRTH2 receptor antagonists are described. One of the most potent compounds, TASP0376377 (6m), showed not only potent binding affinity (IC(50)=19 nM) but also excellent functional antagonist activity (IC(50)=13 nM). TASP0376377 was tested for its ability of a chemotaxis assay to show the effectiveness (IC(50)=23 nM), which was in good agreement with the CRTH2 antagonist potency. Furthermore, TASP0376377 showed sufficient selectivity for binding to CRTH2 over the DP1 prostanoid receptor (IC(50)>1 μM) and COX-1 and COX-2 enzymes (IC(50)>10 μM).  相似文献   
125.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   
126.
To elucidate further the genetic mechanism underlying anthocyanin accumulation in the storage roots of recent Japanese purple-fleshed sweetpotato cultivars, we compared the structure of the IbMYB1 gene in cultivar Ayamurasaki and its spontaneous mutant, AYM96, whose storage roots do not accumulate anthocyanin. Amplification of the IbMYB1 genomic fragment covering the coding sequences suggested that the genome of Ayamurasaki contained three types of IbMYB1 sequences, named IbMYB1-1, IbMYB1-2a and IbMYB1-2b, whereas AYM96 had only IbMYB1-1. Although these three IbMYB1 sequences had identical coding sequences, IbMYB1-1 had a 7-bp insertion in the first intron. IbMYB1-2a and IbMYB1-2b were characterized by a single nucleotide polymorphism in the second intron. Further cloning and sequencing of the flanking regions of these IbMYB1 sequences showed that the promoter and 3′ flanking regions of IbMYB1-2a and IbMYB1-2b were different from those of IbMYB1-1. Genetic analysis using an F1 population derived from a cross between the purple-fleshed cultivar Murasakimasari and AYM96 suggested that IbMYB1-2 sequences are responsible for anthocyanin accumulation in the storage roots. The structural features of these three IbMYB1 sequences and identification of the IbMYB1-2null sequence, which contained sequences very similar to those of the flanking regions of IbMYB1-2a and IbMYB1-2b, but which lacked the sequence around the coding region, suggested that IbMYB1 genes in recent Japanese purple-fleshed cultivars had been established through multiple gene-duplication events.  相似文献   
127.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA?) to LPA?) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA? and LPA? may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   
128.
PGD(2) is the major prostanoid produced during the acute phase of allergic reactions. Two PGD(2) receptors have been isolated, DP and CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), but whether they participate in the pathophysiology of allergic diseases remains unclear. We investigated the role of CRTH2 in the initiation of allergic rhinitis in mice. First, we developed a novel murine model of pollinosis, a type of seasonal allergic rhinitis. Additionally, pathophysiological differences in the pollinosis were compared between wild-type and CRTH2 gene-deficient mice. An effect of treatment with ramatroban, a CRTH2/T-prostanoid receptor dual antagonist, was also determined. Repeated intranasal sensitization with Cry j 1, the major allergen of Cryptomeria japonica pollen, in the absence of adjuvants significantly exacerbated nasal hyperresponsive symptoms, Cry j 1-specific IgE and IgG1 production, nasal eosinophilia, and Cry j 1-induced in vitro production of IL-4 and IL-5 by submandibular lymph node cells. Additionally, CRTH2 mRNA in nasal mucosa was significantly elevated in Cry j 1-sensitized mice. Following repeated intranasal sensitization with Cry j 1, CRTH2 gene-deficient mice had significantly weaker Cry j 1-specific IgE/IgG1 production, nasal eosinophilia, and IL-4 production by submandibular lymph node cells than did wild-type mice. Similar results were found in mice treated with ramatroban. These results suggest that the PGD(2)-CRTH2 interaction is elevated following sensitization and plays a proinflammatory role in the pathophysiology of allergic rhinitis, especially pollinosis in mice.  相似文献   
129.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is known to take an endosomal pathway for cell entry; however, it is thought to enter directly from the cell surface when a receptor-bound virion spike (S) protein is affected by trypsin, which induces cleavage of the S protein and activates its fusion potential. This suggests that SARS-CoV bearing a cleaved form of the S protein can enter cells directly from the cell surface without trypsin treatment. To explore this possibility, we introduced a furin-like cleavage sequence in the S protein at amino acids 798 to 801 and found that the mutated S protein was cleaved and induced cell fusion without trypsin treatment when expressed on the cell surface. Furthermore, a pseudotype virus bearing a cleaved S protein was revealed to infect cells in the presence of a lysosomotropic agent as well as a protease inhibitor, both of which are known to block SARS-CoV infection via an endosome, whereas the infection of pseudotypes with an uncleaved, wild-type S protein was blocked by these agents. A heptad repeat peptide, derived from a SARS-CoV S protein that is known to efficiently block infections from the cell surface, blocked the infection by a pseudotype with a cleaved S protein but not that with an uncleaved S protein. Those results indicate that SARS-CoV with a cleaved S protein is able to enter cells directly from the cell surface and agree with the previous observation of the protease-mediated cell surface entry of SARS-CoV.  相似文献   
130.
Despite their self-sufficient ability to generate capped mRNAs from cytosolic DNA genomes, poxviruses must commandeer the critical eukaryotic translation initiation factor 4F (eIF4F) to recruit ribosomes. While eIF4F integrates signals to control translation, precisely how poxviruses manipulate the multisubunit eIF4F, composed of the cap-binding eIF4E and the RNA helicase eIF4A assembled onto an eIF4G platform, remains obscure. Here, we establish that the poxvirus infection of normal, primary human cells destroys the translational repressor eIF4E binding protein (4E-BP) and promotes eIF4E assembly into an active eIF4F complex bound to the cellular polyadenylate-binding protein (PABP). Stimulation of the eIF4G-associated kinase Mnk1 promotes eIF4E phosphorylation and enhances viral replication and protein synthesis. Remarkably, these eIF4F architectural alterations are accompanied by the concentration of eIF4E and eIF4G within cytosolic viral replication compartments surrounded by PABP. This demonstrates that poxvirus infection redistributes, assembles, and modifies core and associated components of eIF4F and concentrates them within discrete subcellular compartments. Furthermore, it suggests that the subcellular distribution of eIF4F components may potentiate the complex assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号