首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   29篇
  271篇
  2022年   3篇
  2021年   4篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   16篇
  2012年   11篇
  2011年   19篇
  2010年   14篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   7篇
  1989年   9篇
  1988年   9篇
  1987年   12篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1972年   3篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1962年   1篇
  1960年   1篇
  1952年   1篇
  1951年   1篇
  1916年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
21.
22.
Ecosystems - Extensive floodplains and numerous lakes in the Amazon basin are well suited to examine the role of floodable lands within the context of the sources and processing of carbon within...  相似文献   
23.
Protein synthesis, in particular peptide chain elongation, is an energy-consuming biosynthetic process. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in cellular energy homeostasis. Therefore, we tested the hypothesis that, as in liver, it could mediate the inhibition of protein synthesis by oxygen deprivation in heart by modulating the phosphorylation of eukaryotic elongation factor-2 (eEF2), which becomes inactive in its phosphorylated form. In anoxic cardiomyocytes, AMPK activation was associated with an inhibition of protein synthesis and an increase in phosphorylation of eEF2. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), did not mimic the effect of oxygen deprivation to inhibit protein synthesis in cardiomyocytes or lead to eEF2 phosphorylation in perfused hearts, suggesting that AMPK activation did not inhibit mTOR/p70 ribosomal protein S6 kinase (p70S6K) signaling. Human recombinant eEF2 kinase (eEF2K) was phosphorylated by AMPK in a time- and AMP-dependent fashion, and phosphorylation led to eEF2K activation, similar to that observed in extracts from ischemic hearts. In contrast, increasing the workload resulted in a dephosphorylation of eEF2, which was rapamycin-insensitive, thus excluding a role for mTOR in this effect. eEF2K activity was unchanged by increasing the workload, suggesting that the decrease in eEF2 phosphorylation could result from the activation of an eEF2 phosphatase.  相似文献   
24.
25.
We establish, using an ELISA approach, that recombinant human and murine IL-6 bind to an immobilized heparin-BSA complex. In the case of human IL-6, this binding is displaceable by soluble heparin, IC(50) approximately 2 microg/ml, corresponding to approximately 200 nM. This binding is specific because chondroitin sulfates B and C fail to compete, whereas chondroitin sulfate A and several heparan sulfates are weak inhibitors. Of a range of chemically modified heparins examined, the strongest competitor was the 2-O:-desulfated product, but even this showed a considerably reduced IC(50) ( approximately 30 microg/ml). The epitopes of five IL-6-specific mAbs were still accessible in heparin-bound IL-6, and the dimer formed from the association of rIL-6 with its truncated soluble receptor polypeptide, srIL-6alpha, still bound to heparin. Further analysis showed that heparin competed partially and weakly with the binding of srIL-6 to IL-6; however, it competed strongly for the binding of the rIL-6/srIL-6Ralpha dimer, to soluble glycoprotein 130. In studies of the proliferation of IL-6-sensitive Ba/F3 cells expressing glycoprotein 130, we were unable to detect any effect of either the removal of cell surface heparan sulfate, or addition of soluble heparin. By contrast, heparin was able to protect IL-6 from digestion by the bacterial endoproteinase Lys-C. Overall, our findings show that IL-6 is a heparin-binding cytokine. This interaction will tend to retain IL-6 close to its sites of secretion in the tissues by binding to heparin-like glycosaminoglycans, thus favoring a paracrine mode of activity. Moreover, this binding may serve to protect the IL-6 from proteolytic degradation.  相似文献   
26.
27.
We have previously provided compelling evidence that human recombinant interleukin 2 (IL-2) binds to the sulfated polysaccharides heparin, highly sulfated heparan sulfate and fucoidan. Here we show that IL-2 binding is dependent on heparin chain length, but with fragments as small as 15-mers retaining binding activity. The addition of exogenous heparin has no effect on the in vitro biological activity of IL-2. In addition soluble IL-2 receptor alpha and beta polypeptides do not compete with heparin for the binding of IL-2. IL-2 bound by heparin is still recognized by two IL-2 specific monoclonal antibodies, 3H9 and H2- 8, whose epitopes lie in the amino terminal region. Murine IL-2 unlike its human counterpart fails to bind to heparin. Human IL-2 analogs with single amino acid substitutions at positions Lys43, Thr51, and Gln126 analogs no longer bind to heparin. By contrast the Arg38Ala analog retains heparin full heparin binding activity. These experimental findings together with molecular modeling studies suggest two putative heparin binding sites on human IL-2, one involving four basic residues, Lys48, Lys49, Lys54, and His55, and the other being a discontinuous site comprising Lys43, Lys64, Arg81, and Arg83. Neither of these two clusters is completely conserved in murine IL-2. Overall our data suggest that the binding of human IL-2 to heparin and heparan sulfate does not interfere with IL-2/IL-2 receptor interactions. Therefore, binding to glycosaminoglycan may be a mechanism for retaining the cytokine in an active form close to its site of secretion in the tissue, thus favoring a paracrine role for IL-2.   相似文献   
28.
Prior epidemiological, prospective intervention, and peripheral and central fatty acid composition studies suggest that omega-3 fatty acid deficiency may be associated with the pathoaetiology of depression and suicide. In the present study, we determined the fatty acid composition of the postmortem prefrontal cortex (PFC) of adolescent male and female suicide victims and age-matched controls. Fatty acid composition (wt% total fatty acids) and concentrations (μmol/g) were determined in the postmortem PFC (Brodmann area 10) of male and female adolescent (aged 13–20 years) suicide victims (n=20) and age-matched controls (n=20) by gas chromatography. None of the major polyunsaturated fatty acids including the principle brain omega-3 fatty acid, docosahexaenoic acid (DHA), monounsaturated fatty acids, or saturated fatty acids differed significantly between adolescent suicide victims and controls before or after segregation by gender. The arachidonic acid (AA, 20:4n-6): DHA ratio and adrenic acid (22:4n-6) composition were negatively correlated with age at death in controls but not in suicides, and males exhibited a greater AA:DHA ratio irrespective of cause-of-death. These results demonstrate that adolescent male and female suicide victims do not exhibit DHA deficits in the postmortem PFC relative to age-matched controls, and suggest that suicide victims do not exhibit the normal age-related decrease in adrenic acid composition and the AA:DHA ratio.  相似文献   
29.
Through a combination of screening and structure-based rational design, we have discovered a series of N1-(5-(heterocyclyl)-thiazol-2-yl)-3-(4-trifluoromethylphenyl)-1,2-propanediamines that were developed into potent ATP competitive inhibitors of AKT. Studies of linker strand-binding adenine isosteres identified SAR trends in potency and selectivity that were consistent with binding interactions observed in structures of the inhibitors bound to AKT1 and to the counter-screening target PKA. One compound was shown to have acceptable pharmacokinetic properties and to be a potent inhibitor of AKT signaling and of in vivo xenograft tumor growth in a preclinical model of glioblastoma.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号