首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   25篇
  2023年   3篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   10篇
  2012年   16篇
  2011年   19篇
  2010年   14篇
  2009年   16篇
  2008年   19篇
  2007年   17篇
  2006年   13篇
  2005年   19篇
  2004年   10篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1983年   2篇
  1979年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
21.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   
22.
23.
24.
25.
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.  相似文献   
26.
The involvement of ecto-5'-nucleotidase (E-5'Nu) in the elevation of extracellular adenosine during inflammation is unclear. In the present study, the effect of lipopolysaccharide (LPS), an inflammation inducer, was investigated on E-5'Nu in human umbilical vein endothelial cells (HUVECs). E-5'Nu activity was enhanced after a 24 h exposure to LPS. This effect was dose dependent, with an EC50 of 1.66 ng/ml. At 10 microM, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 abolished the LPS-induced E-5'Nu activity. However, at 10 microM, the NF-kappaB inhibitor ammonium pyrrolidine dithiocarbamate had no effect. LPS upregulated the protein expression but not the messenger RNA expression of E-5'Nu. The inhibition of E-5'Nu by 100 microM alpha,beta-methylene adenosine-5'-diphosphate increased the LPS-induced inflammation, suggesting that E-5'Nu plays a significant role in reducing inflammation, probably through the generation of adenosine. In conclusion, the experiments indicate that LPS upregulates E-5'Nu activity in HUVECs through a PI3K-dependent increase in the abundance of E-5'Nu on cell membranes. Since adenosine is an anti-inflammatory molecule, E-5'Nu upregulation may be crucial in protecting endothelial cells against inflammatory damage.  相似文献   
27.
The available evidence suggests that vitamin D has cardiovascular effects besides regulating calcium homeostasis. To examine the effect of 1,25-dihydroxyvitamin D(3), the major metabolite of vitamin D, on endothelium-dependent contractions, aortic rings of spontaneously hypertensive rats (SHR) were suspended in organ chambers for isometric force measurements. Rings were incubated with N(omega)-nitro-l-arginine methyl ester (l-NAME) and then exposed to increasing concentrations of acetylcholine, ATP, or the calcium ionophore to trigger contractions. This was done in the absence or presence of 1,25-dihydroxyvitamin D(3). The release of prostacyclin after acetylcholine or A-23187 stimulation was also measured. The cytosolic-free calcium concentration was measured by confocal microscopy after incubation with the fluorescent dyes fluo-4 and fura red. The presence of vitamin D receptors was confirmed using immunohistochemistry. Acetylcholine- and ATP-induced endothelium-dependent contractions were significantly reduced compared with those obtained in the absence of the drug. This effect was not present if A-23187 was used as an agonist. The acetylcholine- but not the A-23187-induced release of prostacyclin was reduced by the acute administration of 1,25-dihydroxyvitamin D(3). Exposure to 1,25-dihydroxyvitamin D(3) reduced the increase in cytosolic-free calcium concentration caused by acetylcholine but not by A-23187 in cells. Vitamin D receptors were densely distributed in the endothelium. Inecalcitol (19-nor-14-epi-23-yne-1,25-dihydroxyvitamin D(3)), a synthetic analog of vitamin D, caused a comparable depression of endothelium-dependent contractions as 1,25-dihydroxyvitamin D(3). These results demonstrate that vitamin D(3) modulates vascular tone by reducing calcium influx into the endothelial cells and hence decreasing the production of endothelium-derived contracting factors.  相似文献   
28.
Combining single molecule atomic force microscopy (AFM) and protein engineering techniques, here we demonstrate that we can use recombination-based techniques to engineer novel elastomeric proteins by recombining protein fragments from structurally homologous parent proteins. Using I27 and I32 domains from the muscle protein titin as parent template proteins, we systematically shuffled the secondary structural elements of the two parent proteins and engineered 13 hybrid daughter proteins. Although I27 and I32 are highly homologous, and homology modeling predicted that the hybrid daughter proteins fold into structures that are similar to that of parent protein, we found that only eight of the 13 daughter proteins showed beta-sheet dominated structures that are similar to parent proteins, and the other five recombined proteins showed signatures of the formation of significant alpha-helical or random coil-like structure. Single molecule AFM revealed that six recombined daughter proteins are mechanically stable and exhibit mechanical properties that are different from the parent proteins. In contrast, another four of the hybrid proteins were found to be mechanically labile and unfold at forces that are lower than the approximately 20 pN, as we could not detect any unfolding force peaks. The last three hybrid proteins showed interesting duality in their mechanical unfolding behaviors. These results demonstrate the great potential of using recombination-based approaches to engineer novel elastomeric protein domains of diverse mechanical properties. Moreover, our results also revealed the challenges and complexity of developing a recombination-based approach into a laboratory-based directed evolution approach to engineer novel elastomeric proteins.  相似文献   
29.
Epidermal growth factor receptor (EGFR), a receptor often expressed in nasopharyngeal carcinoma (NPC) cells, is one of the recently identified molecular targets in cancer treatment. In the present study, the effects of combined treatment of Zn‐BC‐AM PDT with an EGFR inhibitor AG1478 were investigated. Well‐differentiated NPC HK‐1 cells were subjected to PDT with 1 µM of Zn‐BC‐AM and were irradiated at a light dose of 1 J/cm2 in the presence or absence of EGFR inhibitor AG1478. Specific protein kinase inhibitors of downstream EGFR targets were also used in the investigation. EGFR, Akt, and ERK were found constitutively activated in HK‐1 cells and the activities could be inhibited by the EGFR inhibitor AG1478. A sub‐lethal concentration of AG1478 was found to further enhance the irreversible cell damage induced by Zn‐BC‐AM PDT in HK‐1 cells. Pre‐incubation of the cells with specific inhibitors of EGFR (AG1478), PI3k/Akt (LY294002), or MEK/ERK (PD98059) before light irradiation were found to enhance Zn‐BC‐AM PDT‐induced formation of apoptotic cells. The efficacy of Zn‐BC‐AM PDT can be increased through the inhibition of EGFR/PI3K/Akt and EGFR/MEK/ERK signaling pathways in NPC cells. Combination therapy with Zn‐BC‐AM PDT and EGFR inhibitors may further be developed for the treatment of advanced NPC. J. Cell. Biochem. 108: 1356–1363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号