首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   167篇
  2022年   9篇
  2021年   39篇
  2020年   13篇
  2019年   23篇
  2018年   33篇
  2017年   29篇
  2016年   45篇
  2015年   105篇
  2014年   86篇
  2013年   108篇
  2012年   146篇
  2011年   135篇
  2010年   103篇
  2009年   88篇
  2008年   106篇
  2007年   115篇
  2006年   98篇
  2005年   96篇
  2004年   75篇
  2003年   76篇
  2002年   74篇
  2001年   29篇
  2000年   17篇
  1999年   24篇
  1998年   19篇
  1997年   16篇
  1996年   14篇
  1995年   18篇
  1994年   16篇
  1993年   11篇
  1992年   19篇
  1991年   13篇
  1990年   15篇
  1989年   13篇
  1988年   17篇
  1987年   7篇
  1985年   18篇
  1984年   10篇
  1983年   12篇
  1982年   8篇
  1981年   8篇
  1980年   15篇
  1979年   8篇
  1978年   13篇
  1977年   5篇
  1976年   5篇
  1975年   12篇
  1974年   8篇
  1973年   5篇
  1898年   5篇
排序方式: 共有2036条查询结果,搜索用时 78 毫秒
41.
Organisms have harnessed the unique chemistry of copper for a variety of purposes. However, that same chemistry makes this essential metal toxic at elevated concentrations. Metallothioneins (MTs), a family of small metal-binding proteins, are thought to play a crucial role in the regulation of this reactive ion. Here we report that copper-metallothioneins from the American lobster, Homarus americanus, interact with the tripeptide glutathione (gamma-Glu-Cys-Gly). Glutathione in the cytosolic fraction prepared from the digestive gland of the American lobster coelutes with copper-metallothionein during size-exclusion chromatography. The latter protein can be separated into three isoforms by anion-exchange chromatography. All three isoforms belong to the class I MTs. CuMT-I and -II are very similar, whereas CuMT-III is distinct from isoforms I and II. The interaction between glutathione and MT isoforms was examined by ultrafiltration experiments and size-exclusion HPLC. CuMT-III forms a stable 1:1 complex with glutathione, with a dissociation constant of 1 microM. CuMT-I/II makes a transient complex with glutathione, which releases copper as a copper-glutathione complex. This complex can function as the source of Cu(I) in the restoration of the oxygen-binding capacity of copper-free hemocyanin. These studies suggest that metallothionein and glutathione are intricately linked in the biochemistry of copper regulation.  相似文献   
42.
Complex coacervation is a phenomenon of phase separation that may occur in a solution of positively and negatively charged polyions. The resulting two phases are distinguished by the total concentration of both polyions, with the concentrated phase often containing vesicular structures composed of the two polyelectrolytes. We have used this phenomenon in an attempt to-prepare a hemoglobin-based red blood cell analog. Hemoglobin-containing coacervate vesicles have been prepared from gelatin A and the polyanionic carbohydrates acacia, pectin, or dextranstilfate. Hemoglobin seems to be anchored into the vesicle walls through interaction of its polyanion binding site with the negatively charged residues on the carbohydrates. Oxygen binding by the immobilized HbA is reversible and cooperative, with p50 values at 20 degrees C of 2.8, 6, and 24 mm Hg for the acacia- (pH 7.5), pectin- (pH 6.6), and dextransulfate-(pH 6.6) derived coacervates. Kinetic studies on CO binding show that the rate of CO uptake by the coacervates (t((1/2)) = 13-27 ms at 0.5 mM CO) is similar to that of human erythrocytes.The HbA-containing coacervates slowly dissolve in isotonic salt solutions (145 mM NaCl, pH 7.4), but they can be stabilized by treatment with glutaraldehyde. Oxygen binding by HbA incorporated into the stabilized coacervates derived from dextran sulfate is very similar to oxy gen binding by human red blood cells: p50 = 26 mm Hg and n = 1.89 at 37 degrees C in isotonic salt. These results show how a novel approach, based on an old concept, has led to the preparation of immobilized HbA, with functional properties similar to those of intraerythrocytic HbA.  相似文献   
43.
1. Pig lactate dehydrogenase isoenzyme M4 was labelled with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose and injected intravenously into rats. Previous work has shown that this label does not influence the clearance of the enzyme (half-life about 26 min) and that it is retained within the lysosomes for several hours after endocytosis and breakdown of the protein [De Jong, Bouma & Gruber (1981) Biochem. J. 198, 45--51]. 2. The distribution of the radioactivity over a large number of tissues was determined 2 h after injection. A high percentage of the injected dose was found in liver (41%), spleen (10%) and bone including marrow (21%). 3. Autoradiography indicated uptake of the enzyme mainly by Kupffer cells of the liver, by spleen macrophages and by bone marrow macrophages. 4. Liver cells were isolated 1 h after injection of the enzyme. Kupffer cells, endothelial cells and parenchymal cells were found to endocytose the enzyme at rates corresponding to 4230, 35 and 25 ml of plasma/day per g of cell protein, respectively. 5. Previous injection of carbon particles greatly reduced the uptake of the enzyme by liver and spleen, but the uptake by bone marrow was not significantly changed.  相似文献   
44.
A new mutant of Salmonella typhimurium was isolated which possesses a temperature-sensitive defect in the synthesis of 3-deoxy-D-manno-octulosonic acid. The defect in 3-deoxy-D-manno-octulosonic acid synthesis is due to a temperature-sensitive 3-deoxy-D-manno-octulosonate-8-phosphate synthetase, and the mutant accumulates an incomplete lipid A under nonpermissive conditions. Evidence is presented which indicates that the incomplete lipid A molecule is most likely identical in structure to the lipid A precursor synthesized by previously characterized mutants conditionally defective in 3-deoxy-D-manno-octulosonic acid synthesis. However, unlike related mutants which undergo growth stasis under nonpermissive conditions, the accumulation of lipid A precursor in the new mutant results in cell death at elevated temperatures.  相似文献   
45.
The repeating pentasaccharide of O-antigen from Escherichia coli O111 contains galactose, glucose, N-acetylglucosamine, and colitose, the latter representing the major antigenic determinant. Phenol extraction of this strain was previously shown to release two fractions (I and II) containing O-antigen carbohydrate, and both fractions were believed to be lipopolysaccharide. We have now characterized fractions I and II and conclude that only fraction II represents lipopolysaccharide. Fraction II contains phosphate, 2-keto-3-deoxyoctonate, beta-hydroxymyristic acid, and potent endotoxin activity, whereas fraction I was deficient in all of these properties of the lipid A and core oligosaccharide regions of lipopolysaccharide. Fractions I and II each represented 50% of the total cellular O-antigen, and both were present on the cell surface. Both fractions were metabolically stable, and no precursor-product relationship existed between them. Fraction II had a number-average molecular weight of 15,800, corresponding to an average of 12 O-antigen repeats per molecule. In contrast, fraction I had a number-average molecular weight of 354,000, corresponding to an average of 404 O-antigen repeats per molecule. Before heat treatment, cells of E. coli O111 are poorly agglutinated by O-serum; although this indicates the presence of a capsule, the corresponding K-antigen was never detected. We conclude that fraction I, when present on the cell surface, inhibits agglutination of unheated cultures of E. coli O111 by O-serum because: (i) a variant strain which lacks fraction I was agglutinated by O-serum without prior heating; (ii) erythrocytes coated with purified fraction I behaved like bacteria containing fraction I in showing inhibition of O-serum agglutination; and (iii) heat treatment released fraction I and rendered bacterial cells agglutinable in O-serum.  相似文献   
46.
Abstract: An isolated fraction of Purkinje perikarya was prepared. This fraction had [3H]GABA receptor binding and [3H]muscimol binding analogous to that reported for heterogeneous cerebellar membranes. The finding of two binding components with each ligand suggests that these components do not represent two binding sites, one presynaptic and the other postsynaptic, since both are clearly seen on purified Purkinje cell bodies. Subcellular fractionation indicates that synaptic endings and plasma membranes are enriched in GABA receptors compared with intracellular organelles. Purkinje cell bodies were also found to possess a high-affinity transport system for GABA, which was sensitive to inhibition by diaminobutyric acid (DABA) but not by β-alanine. They showed no evidence of homoexchange (the movement of label without net transport). This supports our suggestion that homoexchange is an artifact of synaptic particle formation.  相似文献   
47.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   
48.
It has been shown that the rate of enzymatic saccharification of cellulosic materials including “pure” cellulose (Whatman CF?11 cellulose), newsprint, lignocellulose (prehydrolyzed to remove hemicelluloses), and wood can be substantially increased by simultaneous wet milling. An enhanced hydrolysis rate was sustained above that observed for ball milling: providing a more extensive saccharification. The cellulosic substrates were wet milled with a variety of grinding elements, such as sand, glass beads, and stainless-steel beads, agitated in a shaker bath. Simultaneous hydrolysis was achieved with a 2% substrate slurry in a 0.1M acetate buffer at 45°C and pH 5. The effectiveness of this process was dependent upon the lignified matrix of the cellulose microfibrils, the grinding elements, and the oscillation frequency of the shaker bath. Wet milling “pure” cellulose for 48 hr, with 3.5 mm glass beads and 200 oscillations/min (opm), yielded 1031 mg reducing sugar/g substrates (93% saccharification) as compared to 483 mg (44%) for the ball-milled sample and 253 mg (23%) for the unmilled material. With the lignified substrates stainless-steel beads (3.5 mm) were more effective than glass. For lignocellulose 529 mg sugar/g substrate (93% saccharification) could be obtained by wet milling with cellulase for 24 hr. This was about three times greater than that of the ball milled (169 mg, 30%) and 10 times greater than that of the unmilled (52 mg, 9%) substrates. The method was also effective for wood particles (60 mesh) giving 143 mg sugar/g wood (approximately 38% saccharification) in 48 hr, whereas the ball-milled sample gave only 79 mg (21%) and the unmlilled substrate 38 mg (10%). These observations can be explained on the basis of the current crystalline theory for the morphology of the cellulosic microfibrils. The advantage of wet milling and simultaneous hydrolysis apparently depends on a continuous generation of accessible sites and sustained rapid hydrolysis rate as the saccharification proceeds, where in the pretreated substrates the hydrolysis rate slow down as the active sites are reduced.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号