排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
Justin J. Greenlee Robert A. Kunkle Jürgen A. Richt Eric M. Nicholson Amir N. Hamir 《PloS one》2014,9(9)
Sheep scrapie is a transmissible spongiform encephalopathy that can be transmitted horizontally. The prion protein gene (PRNP) profoundly influences the susceptibility of sheep to the scrapie agent and the tissue levels and distribution of PrPSc in affected sheep. The purpose of this study was to compare the survival time and PrPSc tissue distribution in sheep with highly resistant and highly susceptible PRNP genotypes after intracranial inoculation of the agent of scrapie. Five sheep each of genotype VRQ/VRQ, VRQ/ARR or ARQ/ARR were inoculated. Sheep were euthanized when clinical signs of scrapie became severe. Clinical signs, microscopic lesions, and western blot profiles were uniform across genotypes and consistent with manifestations of classical scrapie. Mean survival time differences were associated with the 171 polymorphic site with VRQ/VRQ sheep surviving 18 months, whereas VRQ/ARR and ARQ/ARR sheep survived 60 and 56 months, respectively. Labeling of PrPSc by immunohistochemistry revealed similar accumulations in central nervous system tissues regardless of host genotype. Immunoreactivity for PrPSc in lymphoid tissue was consistently abundant in VRQ/VRQ, present but confined to tonsil or retropharyngeal lymph node in 4/5 VRQ/ARR, and totally absent in ARQ/ARR sheep. The results of this study demonstrate the susceptibility of sheep with the ARQ/ARR genotype to scrapie by the intracranial inoculation route with PrPSc accumulation in CNS tissues, but prolonged incubation times and lack of PrPSc in lymphoid tissue. 相似文献
12.
AL Vincent W Ma KM Lager JA Richt BH Janke MR Sandbulte PC Gauger CL Loving RJ Webby A García-Sastre 《Journal of virology》2012,86(19):10597-10605
Control of swine influenza A virus (IAV) in the United States is hindered because inactivated vaccines do not provide robust cross-protection against the multiple antigenic variants cocirculating in the field. Vaccine efficacy can be limited further for vaccines administered to young pigs that possess maternally derived immunity. We previously demonstrated that a recombinant A/sw/Texas/4199-2/1998 (TX98) (H3N2) virus expressing a truncated NS1 protein is attenuated in swine and has potential for use as an intranasal live attenuated influenza virus (LAIV) vaccine. In the present study, we compared 1 dose of intranasal LAIV with 2 intramuscular doses of TX98 whole inactivated virus (WIV) with adjuvant in weanling pigs with and without TX98-specific maternally derived antibodies (MDA). Pigs were subsequently challenged with wild-type homologous TX98 H3N2 virus or with an antigenic variant, A/sw/Colorado/23619/1999 (CO99) (H3N2). In the absence of MDA, both vaccines protected against homologous TX98 and heterologous CO99 shedding, although the LAIV elicited lower hemagglutination inhibition (HI) antibody titers in serum. The efficacy of both vaccines was reduced by the presence of MDA; however, WIV vaccination of MDA-positive pigs led to dramatically enhanced pneumonia following heterologous challenge, a phenomenon known as vaccine-associated enhanced respiratory disease (VAERD). A single dose of LAIV administered to MDA-positive pigs still provided partial protection from CO99 and may be a safer vaccine for young pigs under field conditions, where dams are routinely vaccinated and diverse IAV strains are in circulation. These results have implications not only for pigs but also for other influenza virus host species. 相似文献
13.
Chou YY Albrecht RA Pica N Lowen AC Richt JA García-Sastre A Palese P Hai R 《Journal of virology》2011,85(21):11235-11241
A remarkable feature of the 2009 pandemic H1N1 influenza virus is its efficient transmissibility in humans compared to that of precursor strains from the triple-reassortant swine influenza virus lineage, which cause only sporadic infections in humans. The viral components essential for this phenotype have not been fully elucidated. In this study, we aimed to determine the viral factors critical for aerosol transmission of the 2009 pandemic virus. Single or multiple segment reassortments were made between the pandemic A/California/04/09 (H1N1) (Cal/09) virus and another H1N1 strain, A/Puerto Rico/8/34 (H1N1) (PR8). These viruses were then tested in the guinea pig model to understand which segment of Cal/09 virus conferred transmissibility to the poorly transmissible PR8 virus. We confirmed our findings by generating recombinant A/swine/Texas/1998 (H3N2) (sw/Tx/98) virus, a representative triple-reassortant swine virus, containing segments of the Cal/09 virus. The data showed that the M segment of the Cal/09 virus promoted aerosol transmissibility to recombinant viruses with PR8 and sw/Tx/98 virus backgrounds, suggesting that the M segment is a critical factor supporting the transmission of the 2009 pandemic virus. 相似文献
14.
Clawson ML Richt JA Baron T Biacabe AG Czub S Heaton MP Smith TP Laegreid WW 《PloS one》2008,3(3):e1830
Background
Atypical bovine spongiform encephalopathies (BSEs) are recently recognized prion diseases of cattle. Atypical BSEs are rare; approximately 30 cases have been identified worldwide. We tested prion gene (PRNP) haplotypes for an association with atypical BSE.Methodology/Principle Findings
Haplotype tagging polymorphisms that characterize PRNP haplotypes from the promoter region through the three prime untranslated region of exon 3 (25.2 kb) were used to determine PRNP haplotypes of six available atypical BSE cases from Canada, France and the United States. One or two copies of a distinct PRNP haplotype were identified in five of the six cases (p = 1.3×10−4, two-tailed Fisher''s exact test; CI95% 0.263–0.901, difference between proportions). The haplotype spans a portion of PRNP that includes part of intron 2, the entire coding region of exon 3 and part of the three prime untranslated region of exon 3 (13 kb).Conclusions/Significance
This result suggests that a genetic determinant in or near PRNP may influence susceptibility of cattle to atypical BSE. 相似文献15.
Processing of the Borna Disease Virus Glycoprotein gp94 by the Subtilisin-Like Endoprotease Furin 下载免费PDF全文
Jürgen A. Richt Thomas Fürbringer Andreas Koch Isolde Pfeuffer Christiane Herden Ingrid Bause-Niedrig Wolfgang Garten 《Journal of virology》1998,72(5):4528-4533
Open reading frame IV (ORF-IV) of Borna disease virus (BDV) encodes a protein with a calculated molecular mass of ca. 57 kDa (p57), which increases after N glycosylation to 94 kDa (gp94). The unglycosylated and glycosylated proteins are proteolytically cleaved by the subtilisin-like protease furin. Furin most likely recognizes one of three potential cleavage sites, namely, an arginine at position 249 of the ORF-IV gene product. The furin inhibitor decRVKRcmk decreases the production of infectious BDV significantly, indicating that proteolytic cleavage of the gp94 precursor molecule is necessary for the full biological activity of the BDV glycoprotein. 相似文献
16.
Thorsten Wolff Gunhild Unterstab Gudrun Heins Juergen A Richt Michael Kann 《The Journal of biological chemistry》2002,277(14):12151-12157
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence. 相似文献
17.
The only surface membrane glycoprotein of Borna disease virus (BDV) is synthesized as a polypeptide with a molecular mass of 57 kDa and N-glycosylated to a precursor glycoprotein (GP) of about 94 kDa. It is processed by the cellular protease furin into the C-terminal membrane-anchored subunit GP-C, also known as gp43, and a presumptive N-terminal subunit GP-N, that is highly glycosylated and has a molecular mass of about 51 kDa. However, up to now the latter remained undetected in BDV-infected material. We describe a novel approach to identify glycan masked linear antigenic epitopes. In the present study, GP-N was identified in BDV-infected cells by a combination of lectin precipitation, enzymatic deglycosylation on blot and immunochemistry using an N-terminal specific antiserum. The GP-N has an apparent molecular mass of 45-50 kDa in its glycosylated form and 27 kDa in its deglycosylated form. N-glycan analysis revealed that the precursor GP contains only mannose-rich N-glycans, whereas GP-N and GP-C contain mannose-rich and complex-type N-glycans. 相似文献
18.
19.
H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs. 相似文献
20.
Qinfang Liu Ignacio Mena Jingjiao Ma Bhupinder Bawa Florian Krammer Young S. Lyoo Yuekun Lang Igor Morozov Gusti Ngurah Mahardika Wenjun Ma Adolfo García-Sastre Juergen A. Richt 《Journal of virology》2015,89(14):7401-7408
Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China. In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively. Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection. 相似文献