首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   101篇
  国内免费   1篇
  2021年   13篇
  2018年   9篇
  2016年   12篇
  2015年   13篇
  2014年   23篇
  2013年   27篇
  2012年   39篇
  2011年   31篇
  2010年   27篇
  2009年   15篇
  2008年   38篇
  2007年   30篇
  2006年   27篇
  2005年   23篇
  2004年   17篇
  2003年   21篇
  2002年   31篇
  2001年   25篇
  2000年   28篇
  1999年   13篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   7篇
  1994年   15篇
  1993年   10篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   13篇
  1988年   14篇
  1987年   8篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   16篇
  1980年   17篇
  1979年   7篇
  1978年   8篇
  1977年   17篇
  1976年   12篇
  1975年   9篇
  1973年   8篇
  1972年   20篇
  1970年   9篇
  1969年   8篇
  1967年   7篇
  1966年   7篇
排序方式: 共有860条查询结果,搜索用时 203 毫秒
61.
Advances in the study of Drosophila melanogaster and Caenorhabditis elegans have provided key insights into the processes of neurotransmission and neuromodulation. Work in the past year has revealed that Unc-13 and Rab3a-interacting molecule regulate the conformational state of syntaxin to prime synaptic vesicle fusion. Analyses of synaptotagmin support its role as a putative calcium sensor triggering vesicular fusion and highlight the possible role of SNARE complex oligomerization in the fusion mechanism. Characterization of endophilin mutants demonstrates that kiss-and-run endocytosis is a major component of synaptic vesicle recycling. In neuromodulation, dcaps mutants provide the first genetic insight into possible roles of the CAPS protein in mediating dense core vesicle fusion and modulating synaptic vesicle fusion.  相似文献   
62.
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the mediator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K(+)(ATP) channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward betaadrenoceptor coronary vasodilation that accounts for approximately 25% of coronary vasodilation observed during exercise. There is also a feed-forward alpha-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.  相似文献   
63.
Wiener MC  Richmond BJ 《Bio Systems》2002,67(1-3):295-300
Reliably decoding neuronal responses requires knowing what aspects of neuronal responses are stimulus related, and which aspects act as noise. Recent work shows that spike trains can be viewed as stochastic samples from the rate variation function, as estimated by the time dependent spike density function (or normalized peristimulus time histogram). Such spike trains are exactly described by order statistics, and can be decoded millisecond-by-millisecond by iterative application of order statistics.  相似文献   
64.
65.
Continuous cultures of Chaetoceros muelleri and Isochrysis galbana were grown outdoors in flat plate-glass reactors in which light-path length (LPL) varied from 5 to 30 cm. High daily productivity (13 to 16 g cell mass per square meter of irradiated reactor surface) for long periods of time was obtained in reactors in which the optical path as well as cell density were optimized. 'Twenty centimeters was the optimal LPL, yielding the highest areal productivity of cell mass (g m–2d–1), eicosapentaenoic acid, and docosahexaenoic acid, which was identical with that previously found for polysaccharide production of Porphyridium and not far from the optimal LPL affecting maximal productivity in Nannochloropsis species. Relating the energy impinging on a given reactor surface area to the appropriate number of cells showed that the most efficient light dose per cell, obtained with the 20-cm LPL reactor, was approximately 2.5 times lower than the light dose available per cell in the 5-cm LPL reactor, in which a significant decline in areal cell density accompanied the lowest areal output of cell mass. The most effective harvesting regimen was in the range of 10% to 15% of culture volume harvested daily and replaced with fresh growth medium, resulting in a sustainable culture density of 24 × 106 and 28 × 106 cells/ml of C. muelleri and I. galbana, respectively.  相似文献   
66.
Endophilin is a membrane-associated protein required for endocytosis of synaptic vesicles. Two models have been proposed for endophilin: that it alters lipid composition in order to shape membranes during endocytosis, or that it binds the polyphosphoinositide phosphatase synaptojanin and recruits this phosphatase to membranes. In this study, we demonstrate that the unc-57 gene encodes the Caenorhabditis elegans ortholog of endophilin A. We demonstrate that endophilin is required in C. elegans for synaptic vesicle recycling. Furthermore, the defects observed in endophilin mutants closely resemble those observed in synaptojanin mutants. The electrophysiological phenotype of endophilin and synaptojanin double mutants are virtually identical to the single mutants, demonstrating that endophilin and synaptojanin function in the same pathway. Finally, endophilin is required to stabilize expression of synaptojanin at the synapse. These data suggest that endophilin is an adaptor protein required to localize and stabilize synaptojanin at membranes during synaptic vesicle recycling.  相似文献   
67.
Chasing the dream: plant EST microarrays   总被引:12,自引:0,他引:12  
DNA microarray technology is poised to make an important contribution to the field of plant biology. Stimulated by recent funding programs, expressed sequence tag sequencing and microarray production either has begun or is being contemplated for most economically important plant species. Although the DNA microarray technology is still being refined, the basic methods are well established. The real challenges lie in data analysis and data management. To fully realize the value of this technology, centralized databases that are capable of storing microarray expression data and managing information from a variety of sources will be needed. These information resources are under development and will help usher in a new era in plant functional genomics.  相似文献   
68.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
69.
70.
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号