首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   108篇
  国内免费   1篇
  2021年   13篇
  2016年   12篇
  2015年   14篇
  2014年   22篇
  2013年   30篇
  2012年   42篇
  2011年   32篇
  2010年   31篇
  2009年   21篇
  2008年   39篇
  2007年   29篇
  2006年   28篇
  2005年   23篇
  2004年   16篇
  2003年   23篇
  2002年   31篇
  2001年   29篇
  2000年   29篇
  1999年   20篇
  1998年   15篇
  1997年   8篇
  1996年   18篇
  1995年   9篇
  1994年   15篇
  1993年   12篇
  1992年   13篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   9篇
  1986年   16篇
  1985年   9篇
  1984年   8篇
  1983年   9篇
  1982年   10篇
  1981年   23篇
  1980年   18篇
  1979年   17篇
  1978年   19篇
  1977年   21篇
  1976年   12篇
  1975年   10篇
  1974年   11篇
  1973年   9篇
  1972年   20篇
  1970年   9篇
  1969年   9篇
  1967年   7篇
  1966年   7篇
排序方式: 共有958条查询结果,搜索用时 15 毫秒
71.
72.
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.  相似文献   
73.
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II β1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a “gene walking” technique to obtain intron 2 sequences that flanked MHC class IIβ exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class IIβ loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the β1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations.  相似文献   
74.
Allophenic mice, supposedly containing almost equal numbers of cells derived from embryos of mouse strains C57Bl and FVB, were shown in a recent paper to grow the B16 melanoma, a long transplanted tumor of C57Bl origin, much better than did mice of either the parental C57Bl strain or the C57Bl × FVB F1 hybrid. Mice containing smaller proportions of C57Bl cells rejected the tumor. A reconsideration of these suprising data, in light of the current literature, suggests that the better growth of the tumor in the 50-50% allophenics than in the C57Bl parental strain was almost certainly caused by the tumor stimulation engendered by a weak anti-C57Bl immune reaction in the overtly healthy allophenic mice.  相似文献   
75.
76.
Previous analyses have suggested that Australopithecus africanus possessed more apelike limb proportions than Australopithecus afarensis. However, due to the errors involved in estimating limb length and body size, support for this conclusion has been limited. In this study, we use a new Monte Carlo method to (1) test the hypothesis that A. africanus had greater upper:lower limb-size proportions than A. afarensis and (2) assess the statistical significance of interspecific differences among these taxa, extant apes, and humans. Our Monte Carlo method imposes sampling constraints that reduce extant ape and human postcranial measurements to sample sizes comparable to the fossil samples. Next, composite ratios of fore- and hindlimb geometric means are calculated for resampled measurements from the fossils and comparative taxa. Mean composite ratios are statistically indistinguishable (alpha=0.05) from the actual ratios of extant individuals, indicating that this method conserves each sample's central tendency. When applied to the fossil samples, upper:lower limb-size proportions in A. afarensis are similar to those of humans (p=0.878) and are significantly different from all great ape proportions (p< or =0.034), while Australopithecus africanus is more similar to the apes (p> or =0.180) and significantly different from humans and A. afarensis (p< or =0.031). These results strongly support the hypothesis that A. africanus possessed more apelike limb-size proportions than A. afarensis, suggesting that A. africanus either evolved from a more postcranially primitive ancestor than A. afarensis or that the more apelike limb-size proportions of A. africanus were secondarily derived from an A. afarensis-like ancestor. Among the extant taxa, limb-size proportions correspond with observed levels of forelimb- and hindlimb-dominated positional behaviors. In conjunction with detailed anatomical features linked to arboreality, these results suggest that arboreal posture and locomotion may have been more important components of the A. africanus behavioral repertoire relative to that of A. afarensis.  相似文献   
77.
It has been proposed that morphological characters functionally related to mastication may be unreliable indicators of early hominid phylogeny. One hypothesis states that masticatory characters are highly prone to homoplasy. A second hypothesis states that such characters are likely to be morphologically integrated and thus violate the assumption of character independence implicit in all phylogenetic analyses. Evaluation of these hypotheses requires that masticatory features be accurately identified, but, to date, there have been relatively few attempts to test precisely which early hominid features are functionally related to chewing. This paper uses finite-element analysis to evaluate the functional relationships of a character--palatal thickness--that is one of several Paranthropus synapomorphies putatively related to mastication. A finite-element model of 145,680 elements was created from sixty-one 2-mm-thick CT scans of a Macaca fascicularis skull. The model was assigned the elastic properties of facial bone and loaded with muscle forces corresponding to the moment of centric occlusion during mastication. The model was constrained so as to produce a reaction force (corresponding to the bite force) at M(1). With a few exceptions, the strain patterns in the finite-element model compare well with those gathered from published and unpublished bone-strain experiments. The model was then modified to have a thick palate. The model was reloaded using an identical loading regime, and the strain patterns of the original and thick-palate models were compared. Although a thickened palate acts to reduce palatal strain, strains are elevated in other facial regions. This suggests that a thick palate would not have evolved in isolation as an adaptation to withstand masticatory stress. Rather, a thick palate may have evolved in concert with a suite of other facial features that share a stress-resistance function. This appears to be consistent with hypotheses positing that at least some facial features related to chewing evolved in an integrated fashion. More functional studies of other facial features are needed, as are formal studies of morphological integration.  相似文献   
78.
Factors triggering the de novo appearance of prions are still poorly understood. In yeast, the appearance of one prion, [PSI(+)], is enhanced by the presence of another prion, [PIN(+)]. The [PSI(+)] and [PIN(+)] prion-forming proteins are, respectively, the translational termination factor Sup35 and the yet poorly characterized Rnq1 protein that is rich in glutamines and asparagines. The prion domain of Rnq1 (RnqPD) polymerizes more readily in vitro than the full-length protein. As is typical for amyloidogenic proteins, the reaction begins with a lag phase, followed by exponential growth. Seeding with pre-formed aggregates significantly shortens the lag. A generic antibody against pre-amyloid oligomer inhibits the unseeded but not the self-seeded reaction. As revealed by electron microscopy, RnqPD polymerizes predominantly into spherical species that eventually agglomerate. We observed infrequent fiber-like structures in samples taken at 4 h of polymerization, but in overnight samples SDS treatment was required to reveal fibers among agglomerates. Polymerization reactions in which RnqPD and the prion domain of Sup35 (Sup35NM) cross-seed each other proceeded with a shortened lag that only depends weakly on the protein concentration. Cross-seeded Sup35NM fibers appear to sprout from globular RnqPD aggregates as seen by electron microscopy. RnqPD spherical aggregates appear to associate with and, later occlude, Sup35NM seed fibers. Our kinetic and morphological analyses suggest that, upon cross-seeding, the aggregate provides the surface on which oligomers of the heterologous protein nucleate their subsequent amyloid formation.  相似文献   
79.
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this transport. Here we identify a gene that is required for subtype-specific trafficking of assembled nicotinic AChRs in Caenorhabditis elegans. unc-50 encodes an evolutionarily conserved integral membrane protein that localizes to the Golgi apparatus. In the absence of UNC-50, a subset of AChRs present in body-wall muscle are sorted to the lysosomal system and degraded. However, the trafficking of a second AChR type and of GABA ionotropic receptors expressed in the same muscle cells is not affected in unc-50 mutants. These results suggest that, in addition to ER quality control, assembled AChRs are sorted within the Golgi system by a mechanism that controls the amount of cell-surface AChRs in a subtype-specific way.  相似文献   
80.
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia-associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in Vhl(R200W/R200W) knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号