首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45642篇
  免费   4263篇
  国内免费   35篇
  49940篇
  2022年   285篇
  2021年   617篇
  2020年   349篇
  2019年   435篇
  2018年   569篇
  2017年   525篇
  2016年   945篇
  2015年   1634篇
  2014年   1786篇
  2013年   2257篇
  2012年   2820篇
  2011年   2909篇
  2010年   1898篇
  2009年   1835篇
  2008年   2648篇
  2007年   2670篇
  2006年   2606篇
  2005年   2572篇
  2004年   2501篇
  2003年   2466篇
  2002年   2410篇
  2001年   537篇
  2000年   435篇
  1999年   602篇
  1998年   690篇
  1997年   493篇
  1996年   444篇
  1995年   429篇
  1994年   415篇
  1993年   420篇
  1992年   363篇
  1991年   339篇
  1990年   356篇
  1989年   268篇
  1988年   327篇
  1987年   307篇
  1986年   300篇
  1985年   364篇
  1984年   411篇
  1983年   363篇
  1982年   446篇
  1981年   445篇
  1980年   426篇
  1979年   289篇
  1978年   308篇
  1977年   279篇
  1976年   283篇
  1975年   220篇
  1974年   286篇
  1973年   265篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.  相似文献   
992.
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.  相似文献   
993.
Plant responses to carbon (C) and water availability are strongly connected. Thus, we can learn much about the responses of modern plants to rising atmospheric carbon dioxide (CO2) by studying their performance under a range of carbon and water availabilities, including very low CO2 as in past glacial periods. We hypothesized that, especially in shallow soils, the positive effects of high CO2 and the negative effects of low CO2 on growth response to drought are moderated by plant size-driven feedbacks through transpiration and soil water depletion. We grew two temperate annual C3 species, Avena sativa and Chenopodium album, in glacial (180 ppm), modern (400 ppm) and future (700 ppm) CO2 levels and five soil water regimes in climate chambers. In both species, low CO2 resulted in a much lower relative growth rate, biomass and total leaf area than at ambient CO2 with higher water availability, but this difference disappeared steadily towards severe drought conditions. Elevated CO2 increased relative growth rate, plant biomass and total leaf area of both species slightly compared with ambient CO2. These results were especially pronounced under drought. Our results support the hypothesis that, in annuals, plant size modulates the negative drought effect at low CO2. However, plant size-mediated effects of high CO2 on growth response to drought were inconclusive. Further experiments should reveal the interactive effects of CO2 and water regimes in environments closer to a field setting, both in shallow and in deep soils with unconstrained rooting, as well as in mixed communities.  相似文献   
994.
995.
Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability.  相似文献   
996.
North American glyptodonts originated from South American ancestors during the Great American Biotic Interchange no later than early Blancan North American Land Mammal Age (NALMA). A substantial expansion in population samples from the late Blancan 111 Ranch fauna of southeastern Arizona, several late Blancan faunas in New Mexico, and the early Blancan–Irvingtonian faunas of Guanajuato, Mexico, permit, analysis of sexual dimorphism and ontogeny of Glyptotherium texanum Osborn, 1903. Growth of carapacial osteoderms was allometric, including changes of the external sculpturing. Overall anatomy of the carapace changed with growth, with development of distinctive pre-iliac and post-iliac regions in lateral profile of adults. Skulls of adults possess a unique boss on the anterior surface of the descending process of the zygomatic arch that is not present in juveniles. Sexual dimorphism involves differences in anatomy of lateral and posterior osteoderms. Glyptotherium arizonae Gidley, 1926, is a junior synonym of G. texanum. The temporal distribution of G. texanum extends from early Blancan NALMA to Irvingtonian NALMA, with geographical distribution from Central America and Mexico to southern United States.  相似文献   
997.
Bioprocess and Biosystems Engineering - There is a growing interest in mining and handling of big data, which has been rapidly accumulating in the repositories of bioprocess industries....  相似文献   
998.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号