首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44737篇
  免费   4214篇
  国内免费   33篇
  48984篇
  2022年   273篇
  2021年   612篇
  2020年   340篇
  2019年   416篇
  2018年   560篇
  2017年   520篇
  2016年   933篇
  2015年   1603篇
  2014年   1748篇
  2013年   2226篇
  2012年   2787篇
  2011年   2874篇
  2010年   1867篇
  2009年   1808篇
  2008年   2631篇
  2007年   2654篇
  2006年   2570篇
  2005年   2532篇
  2004年   2467篇
  2003年   2427篇
  2002年   2382篇
  2001年   522篇
  2000年   402篇
  1999年   586篇
  1998年   681篇
  1997年   484篇
  1996年   446篇
  1995年   429篇
  1994年   403篇
  1993年   411篇
  1992年   353篇
  1991年   321篇
  1990年   337篇
  1989年   252篇
  1988年   303篇
  1987年   289篇
  1986年   276篇
  1985年   335篇
  1984年   378篇
  1983年   340篇
  1982年   437篇
  1981年   437篇
  1980年   415篇
  1979年   274篇
  1978年   299篇
  1977年   267篇
  1976年   282篇
  1975年   214篇
  1974年   289篇
  1973年   261篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The repeated use of dinitroaniline herbicides on the cotton and soybean fields of the southern United States has resulted in the appearance of resistant biotypes of one of the world's worst weeds, Eleusine indica. Two biotypes have been characterized, a highly resistant (R) biotype and an intermediate resistant (I) biotype. In both cases the resistance has been attributed to a mutation in α-tubulin, a component of the α/β tubulin dimer that is the major constituent of microtubules. We show here that the I-biotype mutation, like the R-biotype mutation shown in earlier work, can confer dinitroaniline resistance on transgenic maize calli. The level of resistance obtained is the same as that for E. indica I- or R-biotype seedlings. The combined I- and R-biotype mutations increase the herbicide tolerance of transgenic maize calli by a value close to the summation of the maximum herbicide tolerances of calli harbouring the single mutations. These data, taken together with the position of the two different mutations within the atomic structure of the α/β tubulin dimer, imply that each mutation is likely to exert its effect by a different mechanism. These mechanisms may involve increasing the stability of microtubules against the depolymerizing effects of the herbicide or changing the conformation of the α/β dimer so that herbicide binding is less effective, or a combination of both possibilities.  相似文献   
992.
993.
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.  相似文献   
994.
995.
996.
Recent advances in protein engineering have come from creating multi-functional chimeric proteins containing modules from various proteins. These modules are typically joined via an oligopeptide linker, the correct design of which is crucial for the desired function of the chimeric protein. Here we analyse the properties of naturally occurring inter-domain linkers with the aim to design linkers for domain fusion. Two main types of linker were identified; helical and non-helical. Helical linkers are thought to act as rigid spacers separating two domains. Non-helical linkers are rich in prolines, which also leads to structural rigidity and isolation of the linker from the attached domains. This means that both linker types are likely to act as a scaffold to prevent unfavourable interactions between folding domains. Based on these results we have constructed a linker database intended for the rational design of linkers for domain fusion, which can be accessed via the Internet at http://mathbio.nimr.mrc.ac.uk.  相似文献   
997.
The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines.  相似文献   
998.
Fahlman RP  Uhlenbeck OC 《Biochemistry》2004,43(23):7575-7583
Crystallographic studies suggest that the esterified amino acid of aminoacyl tRNA make contacts with the ribosomal A-site but not in the P-site. Biochemical evidence indicating a thermodynamic contribution of the esterified amino acid to binding aminoacyl-tRNA to either the ribosomal P- and A-sites has been inconsistent, partly because of the labile nature of the aminoacyl linkage and the long times required to reach equilibrium. Measuring the association and dissociation rates of deacylated and aminoacylated tRNAs to the A-site and P-site of E. coli ribosomes afforded an accurate estimate of the contribution of the amino acid. While esterified phenylalanine or methionine has no effect on the affinity of tRNA to the P-site, an esterified pheylalanine stabilizes binding to the A-site by 7 kJ/mol, in agreement with the contacts observed in the X-ray crystal structure. In addition, it was shown that the presence of an esterified amino acid in one ribosomal site does not affect the binding of an aa-tRNA to the other site.  相似文献   
999.
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of apolipoprotein B-containing lipoproteins. Within the endoplasmic reticulum, it transfers lipid from the membrane to the forming lipoprotein. Recent evidence suggests that it may also function within the Golgi apparatus. To address this hypothesis, we developed a polyclonal antibody to MTP and used it in a series of studies on mouse liver and McArdle-RH7777 (McA) cells. Western blot analysis demonstrated the presence of MTP within mouse hepatic-Golgi apparatus-rich fractions. In addition, in vitro lipid transfer assays demonstrated the presence of triglyceride transfer activity within the Golgi fractions. Immunohistochemical studies with mouse liver demonstrated the presence of MTP within all hepatocytes, but not in nonparenchymal cells. The subcellular location of MTP in McA cells was investigated using confocal microscopy. MTP colocalized with the trans-Golgi network (TGN) 38 and Golgi SNARE (soluble N-ethylmalemide-sensitive factor attachment protein receptor) of 28 kDa (GS28), markers for the trans- and cis-Golgi apparatus, respectively. Morphometric analyses indicated that approximately 17% of the MTP signal colocalized with the TGN38, while 33% of the trans-Golgi marker colocalized with the MTP. Approximately 17% of the MTP signal colocalized with the GS28, whereas 53% of the cis-Golgi marker colocalized with the MTP. The results provide unequivocal evidence for the location of MTP within the Golgi apparatus, and further highlight the importance of this organelle in the assembly of lipoproteins.  相似文献   
1000.
Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5′-phosphosulfate (APS) reductases possess a cluster and 3′-phosphoadenosine 5′-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号