38.
Recent development of screen-like bonded weaves of titanium wire for orthopaedic implant anchorage affords a unique opportunity for analytic studies of porous ingrowth micromechanics. The regular geometry of individual wires and the periodicity of the mesh weave are exploited in a series of two-dimensional finite element models, mapping interstitial bone stress fields as a function of ingrowth depth and wire size, shape, and spacing.
When the depth of bone ingrowth was less than one wire diameter, peak bone stresses always occurred at the leading (i.e. deepest) edge of bone ingrowth, immediately adjacent to the wire. As ingrowth depth approached a full wire diameter, peak local bone stresses were 2–9 times the nominal applied host bone stress, with greater stresses occurring for lower screen weave densities. Within multiple screen layers, the top layer consistently experienced the peak stress and transmitted most of the applied load, regardless of the number of underlying screen layers surrounded by bone. Neither wire size variations nor partial wire flattening substantially affected general trends in stress predictions. 相似文献