首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71969篇
  免费   6983篇
  国内免费   54篇
  79006篇
  2022年   541篇
  2021年   1151篇
  2020年   583篇
  2019年   788篇
  2018年   976篇
  2017年   893篇
  2016年   1608篇
  2015年   2750篇
  2014年   3005篇
  2013年   3729篇
  2012年   4728篇
  2011年   4783篇
  2010年   3150篇
  2009年   2831篇
  2008年   4181篇
  2007年   4239篇
  2006年   3987篇
  2005年   3913篇
  2004年   3815篇
  2003年   3674篇
  2002年   3583篇
  2001年   958篇
  2000年   763篇
  1999年   983篇
  1998年   1025篇
  1997年   734篇
  1996年   658篇
  1995年   631篇
  1994年   602篇
  1993年   598篇
  1992年   611篇
  1991年   562篇
  1990年   566篇
  1989年   484篇
  1988年   490篇
  1987年   496篇
  1986年   471篇
  1985年   556篇
  1984年   569篇
  1983年   520篇
  1982年   602篇
  1981年   596篇
  1980年   562篇
  1979年   412篇
  1978年   446篇
  1977年   422篇
  1976年   400篇
  1975年   317篇
  1974年   424篇
  1973年   359篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
961.
Scarcity of red spruce (Picea rubens Sarg.) seedlings in declining spruce-fir forests of Camels Hump mountain, Vermont, prompted a study on some contributing factors involved in failure of spruce regeneration. Cones were shorter than those from low elevation red spruce trees from unaffected sites. Seed number in cones collected in declining areas of Camels Hump was low as were seed sizes and weights. Seed germination was at control levels only in good seed years. Capacity of seeds to form seedlings was reduced relative to that of controls, although seedling growth was normal. Coniferous litter contains presumed allelopathic substances leachable by contemporary precipitations that affect seed germination and seedling root development in red spruce, but not in balsam fir. Shield fern contains leachable substances that reduce seed germination and seedling root development in red spruce, but not balsam fir. Roots of red spruce germlings have lower capacity to penetrate through the increased forest duff depths of declining forests than do balsam fir roots. It is anticipated that substantial reproduction of red spruce will not occur in declining montane conifer forests under present conditions.  相似文献   
962.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   
963.
964.
965.
966.
Mallomonas splendens (G. S. West) Playfair has a cell covering of siliceous scales and bristles. Interphase cells bear four anterior and four posterior bristles that each articulate, at their flexed basal ends via a complex of labile fibers (the fibrillar complex), on a specialized body scale (a base-plate scale). Body scales, base-plate scales and bristles are formed independently of each other and at different times in silica deposition vesicles (SDVs) that are associated with one of the two chloroplasts. The fine structure of scale and bristle morphogenesis in M. splendens agrees with that previously described for Synura and Mallomonas. Four new posterior bristles are formed at late interphase with their basal ends towards the cell posterior. The fibrillar complex is formed in situ on the bristle in the SDV. Mature bristles are secreted one by one onto the surface of the protoplast, beneath the layer of body scales, where the basal ends of the bristles adhere to the plasma membrane via the fibrillar complex. The extrusion of posterior bristles and their deployment onto the cell surface was monitored with video. A fine cellular protuberance accompanies the bristles as they are extruded from beneath the scale layer with their basal ends leading. When distant from the cell, the basal ends of the bristles appear attached to the protuberance, possibly by way of their fibrillar complexes. Once bristles are fully extruded, and their tips free in the surrounding environment, the bristle bases are drawn back to the posterior apex of the cell, apparently by the now shortening protuberance. Thus a 180° reorientation of the posterior bristles has been effected outside the cell. Thin-sections of cells that are extruding bristles show a threadlike, cytoplasmic extension of the cell posterior which may be analogous to the protuberance seen in live cells. Four new posterior base-plate scales are secreted after the bristles have reoriented. Scanning electron microscopy indicates that the fibrillar complex is involved in positioning the bristles onto their respective base-plate scales. Anterior bristles are formed in new daughter cells in the same orientation as the posterior bristles; thus they are extruded tip first and no reorientation is required.  相似文献   
967.
Abstract In normal ascidian development, cuticular fins begin to form at the late tailbud stage and are fully formed at hatching. When one or several neurulae were manually demembranated (follicle cells, vitelline coat and test cells removed) and cultured in seawater they failed to form caudal fins. Fins were normal when the follicle cells alone were removed. The shape of the fins was normal when demembranation was delayed to the late tailbud stage. Does demembranation cause the loss of an essential factor produced by the embryos themselves or do the test cells provide a factor for fin morphogenesis? Demembranated neurulae of Ascidia callosa were cultured in groups ranging in size from 2 to 80 in 1 ml volumes of seawater. The mean lengths of the caudal fins increased with group size. In larger groups, some embryos developed fins that were normal in shape and as long as undemembranated controls. Results were similar with Corella inflata. These experiments suggest that a diffusible substance from the embryos facilitates fin morphogenesis and that test cells are not required. Test cells deposit ‘ornaments’ on the tunic in some species. In other species no ornaments are produced. Ten families are compared. It is proposed that the test cells make the tunic hydrophilic.  相似文献   
968.
969.
The marine dinoflagellate Gonyaulax tamarensis Lebour is best known for its propensity to form blooms known as red tides in coastal waters worldwide. This paper examines the sexual cycle of this organism using light and electron microscopy. Sexual reproduction begins with contact between thecate gametes which subsequently shed their thecae to fuse along their pellicular layers. Nuclear fusion occurs well after cytoplasmic fusion and is characterized by several distinctive features: a highly vesiculate nucleoplasm without microtubules; nucleoli and V-shaped chromosomes abut the nuclear envelope distal to the region of nuclear contact; and each chromosome possesses a longitudinal line, the central chromosomal axis. Fusion results in a planozygote with numerous cytoplasmic storage products and a slightly thickened layer beneath the pellicle. Subsequent loss of thecal plates and a thickening of the sub-pellicular layer results in a non-motile hypnozygote. A newly-formed hypnozygote possesses numerous minute papillae along its outer surface, formed by the up-folding of the accumulating wall layer. Maturation of the hypnozygote wall results in a smooth three-layered wall, the outermost layer of which is the pellicular layer. Hypnozygote germination produces a large quadriflagellate plan-omeiocyte with a single nucleus and thecal plates identical to vegetative cells. Two subsequent divisions, presumably meiotic, result in Jour cells morphologically identical to vegetative cells.  相似文献   
970.
We studied 75 individuals of the Plains pocket gopher, Geomys bursarius, from eastern New Mexico, where the subspecies major and knoxjonesi hybridize. Each individual was examined for chromosome number, ribosomal DNA, mitochondrial DNA, and three protein systems for which reference parental populations were fixed for alternative alleles. Twenty individuals were indistinguishable from parental major, 14 individuals were indistinguishable from parental knoxjonesi, and 41 individuals had genotypes composed of combinations of character states that distinguish the two parental types. The parental types appear to represent discrete genetic entities that have restricted introgression across a narrow hybrid zone (width approximately 3 km, using the 20/80 criterion). Parental types overlap in geographic distribution near the center of the zone, and changes in mitochondrial DNA and the five nuclear markers are concordant across the zone. It is probable that there is premating isolation between knoxjonesi males and major females. The frequencies of individuals with certain genotypic combinations within our sample imply differential reproductive success of certain genotypes. We propose that F1's and highly heterozygous males are sterile and that hybrid females are less fertile than parental females. These postmating factors, along with premating isolation for one of the reciprocal crosses, probably account for the restriction of gene flow across the contact zone. The structure of the zone can be explained by the “dynamic equilibrium” model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号