首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1746篇
  免费   149篇
  2023年   12篇
  2022年   18篇
  2021年   41篇
  2020年   26篇
  2019年   32篇
  2018年   53篇
  2017年   37篇
  2016年   66篇
  2015年   91篇
  2014年   95篇
  2013年   132篇
  2012年   144篇
  2011年   133篇
  2010年   94篇
  2009年   77篇
  2008年   103篇
  2007年   97篇
  2006年   93篇
  2005年   95篇
  2004年   73篇
  2003年   78篇
  2002年   75篇
  2001年   16篇
  2000年   11篇
  1999年   22篇
  1998年   22篇
  1997年   11篇
  1996年   13篇
  1995年   13篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1989年   13篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1985年   10篇
  1984年   16篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1976年   2篇
  1968年   1篇
  1966年   5篇
  1962年   1篇
  1956年   1篇
排序方式: 共有1895条查询结果,搜索用时 46 毫秒
931.

Background

Overweight (Ow) and obesity (Ob) influence blood pressure (BP) and left ventricular hypertrophy (LVH). It is unclear whether the presence of metabolic syndrome (MetS) independently affects echocardiographic parameters in hypertension.

Methods

380 Ow/Ob essential hypertensive patients (age ≤65 years) presenting for referred BP control-related problems. MetS was defined according to NCEP III/ATP with AHA modifications and LVH as LVM/h2.7 ≥49.2 g/m2.7 in males and ≥46.7 g/m2.7 in females. Treatment intensity score (TIS) was used to control for BP treatment as previously reported.

Results

Hypertensive patients with MetS had significantly higher BMI, systolic and mean BP, interventricular septum and relative wall thickness and lower ejection fraction than those without MetS. LVM/h2.7 was significantly higher in MetS patients (59.14±14.97 vs. 55.33±14.69 g/m2.7; p = 0.022). Hypertensive patients with MetS had a 2.3-fold higher risk to have LVH/h2.7 after adjustment for age, SBP and TIS (OR 2.34; 95%CI 1.40–3.92; p = 0.001), but MetS lost its independent relationship with LVH when BMI was included in the model.

Conclusions

In Ow/Ob hypertensive patients MetS maintains its role of risk factor for LVH independently of age, SBP, and TIS, resulting in a useful predictor of target organ damage in clinical practice. However, MetS loses its independent relationship when BMI is taken into account, suggesting that the effects on MetS on LV parameters are mainly driven by the degree of adiposity.  相似文献   
932.
Our aim was to identify the key proteins involved in the pathogenesis of AAAs. To explore the possible pathogenetic mechanisms involved in AAA, we analyzed by proteomics modifications in plasma proteome of patients with AAA. Therefore, the present study analyzed the soluble plasma proteins using two dimensional electrophoresis (2-DE) and mass spectrometry (MS). We identified 33 protein spots, 31 of which show an up-regulation in AAA patients whilst the expression level of 2 protein spots is reduced. We confirm a number of biomarkers associated with AAA that have been previously identified by various authors. We identified a significant increase of a class of proteins such as fibrinogen, α1-antitrypsin and haptoglobin in plasma from AAA patients. The presence of these proteins in human AAA plasma may be related to the inflammatory processes active in these subjects. We have seen a negative correlation between the vitamin D-binding protein (DBP) and hemoglobin subunit β and AAA presence. DBP levels have been found to increase in AAA wall tissues by others and this discrepancy with our results could be due to the different analysis source. We wanted to analyze the factors measurable in plasma-associated rather than in tissue-associated markers because the application of circulating biomarkers in diagnostic laboratories would be relatively simple. DBP is very important for vascular remodelling and it may have an important role in the protection of vascular walls. In plasma tissue this protein reduces platelet aggregation and extends coagulation time. No one protein identified in this study has the biologic plausibility to be used singularly as a biomarker of aneurysmal disease due to inadequate specificity. The effect of using multiple biomarkers combined with clinical factors requires investigation in carefully designed population-based studies and these studies need to select the criteria of choice to define healthy controls very carefully. Clearer identification of various markers is needed, possibly using other proteomic techniques to screen for new candidates such as gel-free proteomic technology that enables us to handle larger groups of subject compared to gel-based proteomic technology.  相似文献   
933.
934.
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 μM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.  相似文献   
935.
Agmatine is a novel neuromodulator that plays a protective role in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. Fourier transform infrared (FTIR) spectroscopy analysis detects biomolecular changes in disordered cells and tissues. In this report, we utilize FTIR spectroscopy to characterize the changes in rotenone-induced damage in neuronal-like differentiated SH-SY5Y neuroblastoma cells in the presence or absence of agmatine. The analysis of the FTIR spectra demonstrates significant alterations in rotenone-treated cells, whereas the FTIR spectra obtained after pre-incubation with agmatine (250 nM) significantly reduces these redox alterations and more closely resembles those of the control cells. In particular, rotenone-damaged cells demonstrate spectral alterations related to amide I, which correspond to an increase in β-sheet components, and decreases in the amide II absorption intensity, suggesting a loss of N-H bending and C-N stretching. These alterations were also evident by Fourier self-deconvolution analysis. Thus, rotenone-induced increases in the levels of stretching vibration band related to the protein carboxyl group would account for a significant amount of misfolded proteins in the cell. Agmatine effectively reduces these effects of rotenone on protein structure. In conclusion, antioxidant and scavenging properties of agmatine reduce rotenone-produced cellular damage at the level of protein structure. These, together with other previous observations, demonstrate the therapeutic potential of agmatine in the treatment of Parkinson's disease.  相似文献   
936.
Transglutaminase 2 (TG2) is a multifunctional calcium-dependent enzyme which catalyzes the post-translational protein crosslinking with formation of intra- or inter-molecular epsilon(gamma-glutamyl)lysine bonds or polyamine incorporation. The up-regulation and activation of TG2 have been reported in a variety of physiological events, including cell differentiation, signal transduction, apoptosis, and wound healing, as well as in cell response to stress evoked by different internal and external stimuli. Here we review TG2 role in cell response to redox state imbalance both under physiological and pathological conditions, such as neurodegenerative disorders, inflammation, autoimmune diseases and cataractogenesis, in which oxidative stress plays a pathogenetic role and also accelerates disease progression. The increase in TG activity together with mitochondrial impairment and collapse of antioxidant enzymatic cell defences have been reported to be the prominent biochemical alterations becoming evident prior to neurodegeneration. Moreover, oxidative stress-induced TG2 pathway is involved in autophagy inhibition and aggresome formation, and TG2 has been suggested to function as a link between oxidative stress and inflammation by driving the decision as to whether a protein should undergo SUMO-mediated regulation or proteasomal degradation. Literature data suggest a strong association between oxidative stress and TG2 up-regulation, which in turn may result in cell survival or apoptosis, depending on cell type, kind of stressor, duration of insult, as well as TG2 intracellular localization and activity state. In particular, it may be suggested that TG2 plays a pro-survival role when the alteration of cell redox state homeostasis is not associated with intracellular calcium increase triggering TG2 transamidation activity.  相似文献   
937.
A multidisciplinary approach based on molecular dynamics (MD) simulations using homology models, NMR spectroscopy, and a variety of biophysical techniques was used to efficiently improve the thermodynamic stability of armadillo repeat proteins (ArmRPs). ArmRPs can form the basis of modular peptide recognition and the ArmRP version on which synthetic libraries are based must be as stable as possible. The 42-residue internal Arm repeats had been designed previously using a sequence-consensus method. Heteronuclear NMR revealed unfavorable interactions present at neutral but absent at high pH. Two lysines per repeat were involved in repulsive interactions, and stability was increased by mutating both to glutamine. Five point mutations in the capping repeats were suggested by the analysis of positional fluctuations and configurational entropy along multiple MD simulations. The most stabilizing single C-cap mutation Q240L was inferred from explicit solvent MD simulations, in which water penetrated the ArmRP. All mutants were characterized by temperature- and denaturant-unfolding studies and the improved mutants were established as monomeric species with cooperative folding and increased stability against heat and denaturant. Importantly, the mutations tested resulted in a cumulative decrease of flexibility of the folded state in silico and a cumulative increase of thermodynamic stability in vitro. The final construct has a melting temperature of about 85°C, 14.5° higher than the starting sequence. This work indicates that in silico studies in combination with heteronuclear NMR and other biophysical tools may provide a basis for successfully selecting mutations that rapidly improve biophysical properties of the target proteins.  相似文献   
938.
In radically resected gastric cancer the possibility to predict the site of relapse could be clinically relevant for the selection of post-surgical management. We previously showed that specific tumour integrins genotypes are independently associated with either peritoneal or hematogenous metastases (ITGA and ITGV). Recently VEGF and VEGF-R polymorphisms have been demonstrated to potentially affect tumour angiogenesis and the metastatic process in gastric cancer. We then investigated the role of VEGFs and VEGF-R genotyping in determining either peritoneal carcinosis or hematogenous metastases in radically resected gastric cancer patients. Tumour genotyping for integrins (ITGA and ITGV) was also performed according to our previous findings. Genotyping for VEGF-A, VEGF-C, VEGFR-1,2,3 and ITGA and ITGV was carried out on pT4a radically resected gastric tumours recurring with either peritoneal-only carcinosis or hematogenous metastases. 101 patients fulfilled the inclusion criteria: 57 with peritoneal carcinomatosis only and 44 with hematogenous spread only. At multivariate analysis, intestinal histology and the AC genotype of rs699947 (VEGFA) showed to independently correlate with hematogenous metastases (p = 0.0008 and 0.008 respectively), whereas diffuse histology and the AA genotype of rs2269772 (ITGA) independently correlated with peritoneal-only diffusion (p = <0.0001 and 0.03 respectively). Our results seem to indicate that combining information from genotyping of rs699947 (VEGFA, AC), rs2269772 (ITGA, AA) and tumour histology could allow clinicians to individuate gastric cancer at high risk for recurrence either with peritoneal or hematogenous metastases. The selection tool deriving from this analysis may allow an optimal use of the available treatment strategies in these patients.  相似文献   
939.
Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 3'-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.  相似文献   
940.

Background

Genetic variability of the major subunit (CACNA1E) of the voltage-dependent Ca2+ channel CaV2.3 is associated to risk of type 2 diabetes, insulin resistance and impaired insulin secretion in nondiabetic subjects. The aim of the study was to test whether CACNA1E common variability affects beta cell function and/or insulin sensitivity in patients with newly diagnosed type 2 diabetes.

Methodology/Principal Findings

In 595 GAD-negative, drug naïve patients (mean±SD; age: 58.5±10.2 yrs; BMI: 29.9±5 kg/m2, HbA1c: 7.0±1.3) with newly diagnosed type 2 diabetes we: 1. genotyped 10 tag SNPs in CACNA1E region reportedly covering ∼93% of CACNA1E common variability: rs558994, rs679931, rs2184945, rs10797728, rs3905011, rs12071300, rs175338, rs3753737, rs2253388 and rs4652679; 2. assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp and beta cell function by state-of-art modelling of glucose/C-peptide curves during OGTT. Five CACNA1E tag SNPs (rs10797728, rs175338, rs2184945, rs3905011 and rs4652679) were associated with specific aspects of beta cell function (p<0.05−0.01). Both major alleles of rs2184945 and rs3905011 were each (p<0.01 and p<0.005, respectively) associated to reduced proportional control with a demonstrable additive effect (p<0.005). In contrast, only the major allele of rs2253388 was related weakly to more severe insulin resistance (p<0.05).

Conclusions/Significance

In patients with newly diagnosed type 2 diabetes CACNA1E common variability is strongly associated to beta cell function. Genotyping CACNA1E might be of help to infer the beta cell functional phenotype and to select a personalized treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号