首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1920篇
  免费   153篇
  2023年   12篇
  2022年   15篇
  2021年   40篇
  2020年   26篇
  2019年   34篇
  2018年   56篇
  2017年   37篇
  2016年   73篇
  2015年   93篇
  2014年   101篇
  2013年   137篇
  2012年   148篇
  2011年   140篇
  2010年   102篇
  2009年   88篇
  2008年   115篇
  2007年   107篇
  2006年   107篇
  2005年   105篇
  2004年   80篇
  2003年   83篇
  2002年   86篇
  2001年   26篇
  2000年   13篇
  1999年   26篇
  1998年   26篇
  1997年   12篇
  1996年   18篇
  1995年   13篇
  1994年   8篇
  1993年   9篇
  1992年   11篇
  1991年   9篇
  1990年   13篇
  1989年   12篇
  1988年   11篇
  1986年   4篇
  1985年   9篇
  1984年   15篇
  1982年   10篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1966年   2篇
排序方式: 共有2073条查询结果,搜索用时 171 毫秒
201.
BACKGROUND: Triadimefon is an antifungal derived from triazole. In in vitro whole-rodent embryo cultures, triazole-derivatives showed specific teratogenic effects at the branchial apparatus. The aim of the present work was to test in vivo triadimefon (FON), in order to verify a relationship between triazole exposure, embryonic abnormalities, and/or fetal malformations. METHODS: Pregnant CD-1 mice were treated with 0-300 mg/kg FON by gavage on day 8 post coitum (p.c.) at 10:00 AM, and sacrificed on day 8 p.c. at 1:00 PM, on day 9 p.c. at 10:00 AM, on day 10 p.c. at 10:00 AM, and at term of gestation (day 18 p.c.). At midgestation, the embryos were processed for specific immunostainings to visualize the hindbrain segmentation (day 8 p.c.) and the neural crest cell migration (days 8 and 9 p.c.). Fetuses explanted at term were all processed for skeletal examination after double-staining of osseous and cartilaginous tissues. RESULTS: At midgestation, the immunostaining of rhombomeres 3 and 5 showed a light scattering of the immunostained areas; the neural crest cell migration was unaffected, but their localization at the branchial arch level was abnormal. At term, several severe malformations were observed at the craniofacial and at the axial skeletal level. Ectopic cartilage was observed at the upper jaw. CONCLUSIONS: Triadimefon is teratogenic. The observed craniofacial malformations could be explained by an alteration of the rhombomeric organization and neural crest migration to the branchial arches; the axial abnormalities could be explained by the abnormal segmental identity specification.  相似文献   
202.
BACKGROUND: the inhibition of histone deacetylase (HDAC) has been reported as an effective mechanism on therapy in neoplastic diseases. Among HDAC inhibitors, Trichostatin A (TSA) and Valproic Acid (VPA) prevent the tumorigenesis in rodent and human models. Malformations as neural tube and axial skeletal defects are well-known VPA side effects. Recent hypotheses suggest the HDAC inhibitor activity as the teratogenic mechanism of VPA. The teratogenic potency of TSA is, at the moment, unknown. The aim of the present work is to investigate the HDAC inhibition on embryos exposed in utero to TSA or VPA and to compare the teratogenic potential of these two molecules on the axial skeleton morphogenesis. METHODS: Pregnant CD mice were i.p. treated on day 8 post coitum (9.00 a.m.) with 400 mg/kg VPA or with 0, 2, 4, 8, 16 mg/kg TSA. Embryos explanted 1 hr after the treatment from some females exposed to 400 mg/kg VPA or to 16 mg/kg TSA were processed for Western blotting and immunohistochemical analysis, in order to evaluate the histone hyperacetylation in the total embryo homogenates and to visualize the hyperacetylated tissues. Foetuses at term were processed for skeletal examination. RESULTS: Both VPA and TSA were able to induce hyperacetylation on embryos, specifically at the level of the caudal neural tube and of somites. At term, TSA showed teratogenic effects at the axial skeleton, quite similar to those observed after VPA exposure. CONCLUSIONS: In conclusion, both VPA and TSA are teratogenic in mice. A direct correlation between somite hyperacetylation and axial abnormalities could suggest the HDAC inhibition as the mechanism of the teratogenic effects.  相似文献   
203.
204.
Discovering high mobility group A molecular partners in tumour cells   总被引:2,自引:0,他引:2  
DNA-based activities rely on an extremely coordinated sequence of events performed by several chromatin-associated proteins which act in concert. High Mobility Group A (HMGA) proteins are non-histone architectural nuclear factors that participate in the regulation of specific genes but they are also believed to have a more general role in chromatin dynamics. The peculiarity of these proteins is their flexibility, both in terms of DNA-binding and in protein-protein interactions. Since these proteins act as core elements in the assembly of multiprotein complexes called enhanceosomes, and have already displayed the ability to interact with several different proteins, we started a proteomic approach for the systematic identification of their molecular partners. By a combination of affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry we have identified about twenty putative HMGA interactors which could be roughly assigned to three different classes: mRNA processing proteins, chromatin remodelling related factors and structural proteins. Direct HMGA interaction with some of these proteins was confirmed by glutathione-S-transferase pull-down assays and the HMGA domain involved was mapped. Blot-overlay experiments reveal that members of the HMGA family share most of their molecular partners but, interestingly, it seems that there are some cell-type specific partners. Taken together, these experimental data indicate that HMGA proteins are highly connected nodes in the chromatin protein network. Since these proteins are strongly implicated with cancer development, the identification of molecules able to perturb the HMGA molecular network could be a possible tool to interfere with their oncogenic activity.  相似文献   
205.
The aim of this study was to analyze the type of immune response (Th1, Th2) and protein composition of bronchoalveolar lavage (BAL) of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Flow cytometry analysis of intracellular cytokines revealed different patterns: in IPF and SSc Th2 profiles were predominant, whereas in sarcoidosis Th1 prevailed. The proteomic analysis of BAL fluid (BALF) showed that there were quantitative differences between the three diseases. These were more evident between sarcoidosis and IPF, confirming our previous observations, whereas SSc had an intermediate profile between the two, however with some peculiarities. Comparison of BALF protein maps, constructed with the same quantity of total proteins, enabled us to identify the main profiles of the three diseases: an increase in plasma protein prevalent in sarcoidosis and also present in SSc, though for fewer proteins with respect to IPF and a greater abundance of low molecular weight proteins, mainly locally produced, in IPF. These findings are in line with the different pathogenesis of these diseases: IPF is considered a prevalently fibrotic disorder limited to the lung, with intense local production of functionally different proteins, whereas sarcoidosis and SSc are systemic immunoinflammatory diseases.  相似文献   
206.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   
207.
208.
209.
Intracellular lipid-binding proteins (iLBPs) are small cytoplasmic proteins that specifically interact with hydrophobic ligands. Fatty acid-binding proteins (FABPs), cellular retinoic acid-binding proteins (CRABPs) and cellular retinol-binding proteins (CRBPs) belong to the iLBP family. A recently identified insect (Manduca sexta) iLBP has been reported to possibly represent an invertebrate CRABP mimicking the role of CRABPs in vertebrate organisms. The presence in this protein of the characteristic binding triad residues involved in the interaction with ligand carboxylate head groups, a feature pertaining to several FABPs and to CRABPs, and the close phylogenetic relationships with both groups of vertebrate heart-type FABPs and CRBPs/CRABPs, makes it difficult to assign it to either FABPs or CRABPs. However, its negligible interaction with retinoic acid and high affinity (K(d) values in the 10(-8) M range) for fatty acids have been established by means of direct and competitive binding assays. As shown by phylogenetic analysis, the M. sexta iLBP belongs to a wide group of invertebrate iLBPs, which, besides being closely related phylogenetically, share distinctive features, such as the conservation of chemically distinct residues in their amino acid sequences and the ability to bind fatty acids. Our results are in keeping with the lack of cellular retinoid-binding proteins in invertebrates and with their later appearance during the course of chordate evolution.  相似文献   
210.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号