首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   46篇
  361篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   16篇
  2014年   20篇
  2013年   12篇
  2012年   23篇
  2011年   13篇
  2010年   20篇
  2009年   16篇
  2008年   17篇
  2007年   23篇
  2006年   15篇
  2005年   11篇
  2004年   23篇
  2003年   9篇
  2002年   16篇
  2001年   12篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   8篇
  1989年   10篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1944年   1篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
11.

Background  

E. sakazakii is considered to be an opportunistic pathogen, implicated in food borne diseases causing meningitis or enteritis especially in neonates and infants. Cultural standard identification procedures for E. sakazakii include the observation of yellow pigmentation of colonies and a positive glucosidase activity. Up to now, only one PCR system based on a single available 16S rRNA gene sequence has been published for E. sakazakii identification. However, in our hands a preliminary evaluation of this system to a number of target and non-target strains showed significant specificity problems of this system. In this study full-length 16S rRNA genes of thirteen E. sakazakii strains from food, environment and human origin as well as the type strain ATCC 51329 were sequenced. Based on this sequence data a new specific PCR system for E. sakazakii was developed and evaluated.  相似文献   
12.
Mps1 kinase plays an evolutionary conserved role in the mitotic spindle checkpoint. This system precludes anaphase onset until all chromosomes have successfully attached to spindle microtubules via their kinetochores. Mps1 overexpression in budding yeast is sufficient to trigger a mitotic arrest, which is dependent on the other mitotic checkpoint components, Bub1, Bub3, Mad1, Mad2, and Mad3. Therefore, Mps1 might act at the top of the mitotic checkpoint cascade. Moreover, in contrast to the other mitotic checkpoint components, Mps1 is essential for spindle pole body duplication in budding yeast. Centrosome duplication in mammalian cells might also be controlled by Mps1 , but the fission yeast homolog is not required for spindle pole body duplication. Our phenotypic characterizations of Mps1 mutant embryos in Drosophila do not reveal an involvement in centrosome duplication, while the mitotic spindle checkpoint is defective in these mutants. In addition, our analyses reveal novel functions. We demonstrate that Mps1 is also required for the arrest of cell cycle progression in response to hypoxia. Finally, we show that Mps1 and the mitotic spindle checkpoint are responsible for the developmental cell cycle arrest of the three haploid products of female meiosis that are not used as the female pronucleus.  相似文献   
13.
Hydroxylation of benzylic methyl carbon atoms on drugs and carcinogenic polycyclic aromatic hydrocarbons (PAHs) forms benzylic alcohols. Many carcinogenic and mutagenic PAHs bear a primary or secondary benzylic hydroxyl group attached to the meso-region of the molecule. According to the unified theory, PAHs bearing a benzylic hydroxyl group are proximate carcinogenic metabolites. This paper demonstrates that carcinogenic benz[a]anthracenes bearing a formyl group at the meso-region undergo enzymatic reductive metabolism to the corresponding carcinogenic benzylic alcohol in vitro and in vivo. The unified theory would then predict sulfuric acid esterification of such benzylic alcohols as the final common step in their metabolic activation to generate ultimate electrophilic benzylic carbocations. Finally, oxidative metabolism of 7-formylbenz[a]anthracenes gives rise to corresponding carboxylic acids and other oxygenated metabolites that are carcinogenically inert. Thus, oxidative metabolism of meso-region formyl compounds represents an avenue for the elimination of the carcinogen in a detoxified form.  相似文献   
14.
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is one of several kinases activated through direct phosphorylation by p38 mitogen-activated protein kinase. MK2 regulates LPS-induced TNF mRNA translation, and targeted mutation of the MK2 gene renders mice more resistant to D-galactosamine plus LPS-induced liver damage. In the present study, we investigated the role of MK2 in immune defense against Listeria monocytogenes infection. MK2-deficient mice displayed diminished resistance to L. monocytogenes due to impaired control of bacterial growth. The increase in bacterial load in MK2(-/-) mice was associated with normal levels of IL-1 beta, IL-6, and IFN-gamma, whereas TNF production was strongly attenuated. In line, MK2-deficient bone marrow-derived macrophages showed impaired release of TNF, but not of IL-1 beta, in response to various bacterial stimuli in addition to decreased phagocytosis of fluorescence-labeled bacteria. Furthermore, spleen cells from MK2(-/-) mice displayed diminished IFN-gamma synthesis after stimulation with L. monocytogenes. In contrast, MK2 deficiency had no effect on macrophage generation of NO or on oxidative burst activity in response to L. moocytogenes. These results indicate an essential role of MK2 in host defense against intracellular bacteria probably via regulation of TNF and IFN-gamma production required for activation of antibacterial effector mechanisms.  相似文献   
15.
16.
Alam M  Vance DE  Lehner R 《Biochemistry》2002,41(21):6679-6687
Triacylglycerol hydrolase is a microsomal enzyme that hydrolyzes stored cytoplasmic triacylglycerol in the liver and participates in the lipolysis/re-esterification cycle during the assembly of very-low-density lipoproteins. The structure-activity relationship of the enzyme was investigated by site-directed mutagenesis and heterologous expression. Expression of human TGH in Escherichia coli yields a protein without enzymatic activity, which suggests that posttranslational processing is necessary for the catalytic activity. Expression in baculovirus-infected Sf-9 cells resulted in correct processing of the N-terminal signal sequence and yielded a catalytically active enzyme. A putative catalytic triad consisting of a nucleophilic serine (S221), glutamic acid (E354), and histidine (H468) was identified. Site-directed mutagenesis of the residues (S221A, E354A, and H468A) yielded a catalytically inactive enzyme. CD spectra of purified mutant proteins were very similar to that of the wild-type enzyme, which suggests that the mutations did not affect folding. Human TGH was glycosylated in the insect cells. Mutagenesis of the putative N-glycosylation site (N79A) yielded an active nonglycosylated enzyme. Deletion of the putative C-terminal endoplasmic reticulum retrieval signal (HIEL) did not result in secretion of the mutant protein. A model of human TGH structure suggested a lipase alpha/beta hydrolase fold with a buried active site and two disulfide bridges (C87-C116 and C274-C285).  相似文献   
17.
Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.  相似文献   
18.
19.
Lipid droplets (LDs) form from the endoplasmic reticulum (ER) and grow in size by obtaining triacylglycerols (TG). Triacylglycerol hydrolase (TGH), a lipase residing in the ER, is involved in the mobilization of TG stored in LDs for the secretion of very-low-density lipoproteins. In this study, we investigated TGH-mediated changes in cytosolic LD dynamics. We have found that TGH deficiency resulted in decreased size and increased number of LDs in hepatocytes. Using fluorescent fatty acid analogues to trace LD formation, we observed that TGH deficiency did not affect the formation of nascent LDs on the ER. However, the rate of lipid transfer into preformed LDs was significantly slower in the absence of TGH. Absence of TGH expression resulted in increased levels of membrane diacylglycerol and augmented phospholipid synthesis, which may be responsible for the delayed lipid transfer. Therefore, altered maturation (growth) rather than nascent formation (de novo synthesis) may be responsible for the observed morphological changes of LDs in TGH-deficient hepatocytes.  相似文献   
20.
The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号