首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6246篇
  免费   374篇
  国内免费   1篇
  2023年   58篇
  2022年   65篇
  2021年   169篇
  2020年   118篇
  2019年   142篇
  2018年   194篇
  2017年   152篇
  2016年   234篇
  2015年   332篇
  2014年   384篇
  2013年   418篇
  2012年   531篇
  2011年   537篇
  2010年   326篇
  2009年   242篇
  2008年   342篇
  2007年   365篇
  2006年   356篇
  2005年   267篇
  2004年   264篇
  2003年   227篇
  2002年   224篇
  2001年   63篇
  2000年   42篇
  1999年   38篇
  1998年   54篇
  1997年   46篇
  1996年   46篇
  1995年   36篇
  1994年   32篇
  1993年   28篇
  1992年   33篇
  1991年   22篇
  1990年   19篇
  1989年   22篇
  1988年   23篇
  1987年   9篇
  1986年   12篇
  1985年   21篇
  1984年   8篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1979年   12篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
排序方式: 共有6621条查询结果,搜索用时 39 毫秒
991.
992.
993.
Storage of recalcitrant seeds leads to the initiation of subcellular damage or to the initiation of germination process, and both may result in viability loss. This study aimed to elucidate the biochemical basis of embryos survival of Araucaria angustifolia recalcitrant seeds during storage. After harvesting, seeds were stored at ambient conditions (without temperature and humidity control) and in a cold chamber (temperature of 10 ± 3 °C, and relative humidity of 45 ± 5 %). Moisture content, viability, H2O2 content, lipid peroxidation, protein content, and activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), at 0, 15, 45 and 90 days of storage, were evaluated. Seed viability reduced about 40 % during the storage period accompanied by a reduction in soluble protein (about 64 % of reduction) in both storage conditions, and increased lipid peroxidation (about 115 % and 66 % for ambient and cold chamber conditions, respectively). H2O2 content used as a marker of oxidative stress was reduced during the period, possibly controlled by the action of CAT and APX, for which increased activities were observed. The results allowed the identification of seven SOD isoenzymes (one Mn-SOD, five Fe-SOD and one Cu/Zn-SOD), whose activities also increased in response to storage. Some biochemical damage resulting from storage was observed, but viability reduction was not due to failure of enzymatic protection mechanisms.  相似文献   
994.
In a recent article, Hachich et al. (2015, Journal of Biogeography, 42 , 1871–1882) studied the large‐scale biogeographical patterns of the species–area, species–island age and species–isolation relationships associated with marine shallow‐water groups (reef fish, gastropods and seaweeds) from 11 Atlantic archipelagos. We here express our concerns regarding the data accuracy used to compute the different models that tested the null hypothesis of species richness being independent of the selected variables. In our commentary, we focus mainly on the use of out‐of‐date checklists of gastropod and seaweed species from different archipelagos, but we also point out inaccuracies in some island age estimates and explain our disagreement with the use of the 200 m depth limit for the shallow‐water gastropods and seaweeds.  相似文献   
995.
996.
997.
The antibody crystallizable fragment (Fc) is recognized by effector proteins as part of the immune system. Pathogens produce proteins that bind Fc in order to subvert or evade the immune response. The structural characterization of the determinants of Fc–protein association is essential to improve our understanding of the immune system at the molecular level and to develop new therapeutic agents. Furthermore, Fc‐binding peptides and proteins are frequently used to purify therapeutic antibodies. Although several structures of Fc–protein complexes are available, numerous others have not yet been determined. Protein–protein docking could be used to investigate Fc–protein complexes; however, improved approaches are necessary to efficiently model such cases. In this study, a docking‐based structural bioinformatics approach is developed for predicting the structures of Fc–protein complexes. Based on the available set of X‐ray structures of Fc–protein complexes, three regions of the Fc, loosely corresponding to three turns within the structure, were defined as containing the essential features for protein recognition and used as restraints to filter the initial docking search. Rescoring the filtered poses with an optimal scoring strategy provided a success rate of approximately 80% of the test cases examined within the top ranked 20 poses, compared to approximately 20% by the initial unrestrained docking. The developed docking protocol provides a significant improvement over the initial unrestrained docking and will be valuable for predicting the structures of currently undetermined Fc–protein complexes, as well as in the design of peptides and proteins that target Fc.  相似文献   
998.
With ecosystems increasingly having co-occurring invasive species, it is becoming more important to understand invasive species interactions. At the southern end of the Americas, American beavers (Castor canadensis), muskrats (Ondatra zibethicus), and American mink (Neovison vison), were independently introduced. We used generalized linear models to investigate how muskrat presence related to beaver-modified habitats on Navarino Island, Chile. We also investigated the trophic interactions of the mink with muskrats and beavers by studying mink diet. Additionally, we proposed a conceptual species interaction framework involving these invasive species on the new terrestrial community. Our results indicated a positive association between muskrat presence and beaver-modified habitats. Model average coefficients indicated that muskrats preferred beaver-modified freshwater ecosystems, compared to not dammed naturally flowing streams. In addition, mammals and fish represented the main prey items for mink. Although fish were mink’s dominant prey in marine coastal habitats, muskrats represented >50 % of the biomass of mink diet in inland environments. We propose that beavers affect river flow and native vegetation, changing forests into wetlands with abundant grasses and rush vegetation. Thus, beavers facilitate the existence of muskrats, which in turn sustain inland mink populations. The latter have major impacts on the native biota, especially on native birds and small rodents. The facilitative interactions among beavers, muskrats, and mink that we explored in this study, together with other non-native species, suggest that an invasive meltdown process may exist; however further research is needed to confirm this hypothesis. Finally, we propose a community-level management to conserve the biological integrity of native ecosystems.  相似文献   
999.
Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.  相似文献   
1000.
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号