首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6265篇
  免费   373篇
  国内免费   1篇
  2023年   58篇
  2022年   83篇
  2021年   169篇
  2020年   118篇
  2019年   142篇
  2018年   194篇
  2017年   152篇
  2016年   234篇
  2015年   332篇
  2014年   384篇
  2013年   418篇
  2012年   531篇
  2011年   537篇
  2010年   326篇
  2009年   242篇
  2008年   342篇
  2007年   365篇
  2006年   356篇
  2005年   267篇
  2004年   264篇
  2003年   227篇
  2002年   224篇
  2001年   63篇
  2000年   42篇
  1999年   38篇
  1998年   54篇
  1997年   46篇
  1996年   46篇
  1995年   36篇
  1994年   32篇
  1993年   28篇
  1992年   33篇
  1991年   22篇
  1990年   19篇
  1989年   22篇
  1988年   23篇
  1987年   9篇
  1986年   12篇
  1985年   21篇
  1984年   8篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1979年   12篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
排序方式: 共有6639条查询结果,搜索用时 178 毫秒
241.
Cities are rapidly growing and need to look for ways to optimize resource consumption. Metropolises are especially vulnerable in three main systems, often referred to as the FEW (i.e., food, energy, and water) nexus. In this context, urban rooftops are underutilized areas that might be used for the production of these resources. We developed the Roof Mosaic approach, which combines life cycle assessment with two rooftop guidelines, to analyze the technical feasibility and environmental implications of producing food and energy, and harvesting rainwater on rooftops through different combinations at different scales. To illustrate, we apply the Roof Mosaic approach to a densely populated neighborhood in a Mediterranean city. The building‐scale results show that integrating rainwater harvesting and food production would avoid relatively insignificant emissions (13.9–18.6 kg CO2 eq/inhabitant/year) in the use stage, but their construction would have low environmental impacts. In contrast, the application of energy systems (photovoltaic or solar thermal systems) combined with rainwater harvesting could potentially avoid higher CO2 eq emissions (177–196 kg CO2 eq/inhabitant/year) but generate higher environmental burdens in the construction phase. When applied at the neighborhood scale, the approach can be optimized to meet between 7% and 50% of FEW demands and avoid up to 157 tons CO2 eq/year. This approach is a useful guide to optimize the FEW nexus providing a range of options for the exploitation of rooftops at the local scale, which can aid cities in becoming self‐sufficient, optimizing resources, and reducing CO2 eq emissions.  相似文献   
242.
243.
Polarized cell migration results from the transduction of extra-cellular cues promoting the activation of Rho GTPases with the intervention of multidomain proteins, including guanine exchange factors. P-Rex1 and P-Rex2 are Rac GEFs connecting Gbetagamma and phosphatidylinositol 3-kinase signaling to Rac activation. Their complex architecture suggests their regulation by protein-protein interactions. Novel mechanisms of activation of Rho GTPases are associated with mammalian target of rapamycin (mTOR), a serine/threonine kinase known as a central regulator of cell growth and proliferation. Recently, two independent multiprotein complexes containing mTOR have been described. mTORC1 links to the classical rapamycin-sensitive pathways relevant for protein synthesis; mTORC2 links to the activation of Rho GTPases and cytoskeletal events via undefined mechanisms. Here we demonstrate that P-Rex1 and P-Rex2 establish, through their tandem DEP domains, interactions with mTOR, suggesting their potential as effectors in the signaling of mTOR to Rac activation and cell migration. This possibility was consistent with the effect of dominant-negative constructs and short hairpin RNA-mediated knockdown of P-Rex1, which decreased mTOR-dependent leucine-induced activation of Rac and cell migration. Rapamycin, a widely used inhibitor of mTOR signaling, did not inhibit Rac activity and cell migration induced by leucine, indicating that P-Rex1, which we found associated to both mTOR complexes, is only active when in the mTORC2 complex. mTORC2 has been described as the catalytic complex that phosphorylates AKT/PKB at Ser-473 and elicits activation of Rho GTPases and cytoskeletal reorganization. Thus, P-Rex1 links mTOR signaling to Rac activation and cell migration.  相似文献   
244.
The tail of the earliest known articulated fully skeletonized vertebrate, the arandaspid Sacabambaspis from the Ordovician of Bolivia, is redescribed on the basis of further preparation of the only specimen in which it is most extensively preserved. The first, but soon discarded, reconstruction, which assumed the presence of a long horizontal notochordal lobe separating equal sized dorsal and ventral fin webs, appears to have considerable merit. Although the ventral web is significantly smaller than the dorsal one, the presence of a very long notochordal lobe bearing a small terminal web is confirmed. The discrepancy in the size of the ventral and dorsal webs rather suggests that the tail was hypocercal, a condition that would better accord with the caudal morphology of the living agnathans and the other jawless stem gnathostomes.  相似文献   
245.
PCNA is an essential factor for DNA replication, repair, chromatin metabolism, and effector of cell-cycle regulatory signals. The assignment of backbone 1HN, 13Cα, 13CO, and 15N, and sidechain 13Cβ resonances of the human PCNA homotrimeric ring (∼90 kDa, 261 residues) is reported here.  相似文献   
246.
Improved fermentation of starch and its dextrin products would benefit the brewing and whiskey industries. Most strains ofSaccharomyces ferment glucose and maltose and partially ferment maltotriose, but are unable to utilise the larger dextrin products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to transport the aforementioned mono-, di- and trisaccharides into the cytosol. The maltotriose transporting efficiency varies between differentSaccharomyces strains. In this study, severalSaccharomyces strains, including whiskey strains, were screened for growth on maltotriose. TheAGT1 genes, which encode a maltose transporter that show affinity for maltotriose uptake, were isolated from the strains that grew strongest in media with maltotriose as sole carbon source. The isolatedAGT1 alleles were sequenced and their chromosomal locations determined in the strains from which they were cloned. Nucleotide and deduced amino acid sequences of the isolated genes shared 95% and 98% identity, respectively. The efficiency of maltotriose transport was determined by expressing theAGT1 variants in an identical genetic background. TheK m values obtained for all the permeases were very similar (≈3), but the permease with improved performance for maltotriose transport showed an approximately 30% higherV max value than for the others. The data obtained suggest that the genetic variation among theAGT1-encoded transporters is reason for the variation in maltotriose transport efficiency among differentSaccharomyces strains. This study offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whiskey industries.  相似文献   
247.
The relative stabilities of the alkali [M ⊂ 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K ⊂ 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na ⊂ 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes. Figure Alkali cryptates [M ⊂ 222]+ (M = Na, K, Rb and Cs) relative stabilities in gas and methanol:water solution: solvent effects and molecular recognition
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
248.
Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer. Here we show that, unlike SP85 and other protein precursors, which are stored in prespore vesicles, SP65 is, like cellulose, synthesized just in time. By tagging the SP65 locus with green fluorescent protein, we find that SP65 is delivered to the cell surface via largely distinct vesicles, suggesting that separate delivery of components of the cellulose-SP85-SP65 complex regulates its formation at the cell surface. In support of previous in vivo studies, recombinant SP65 and SP85 are shown to interact directly. In addition, truncation of SP65 causes a defect of the outer layer permeability barrier as seen previously for SP85 mutants. These observations suggest that assembly of the cellulose-SP85-SP65 triad at the cell surface is biosynthetically regulated both temporally and spatially and that the complex contributes an essential function to outer layer architecture and function.  相似文献   
249.
Antiepileptic drugs (AED) have been associated to in vivo deleterious consequences in bone tissue. The present work aimed to characterize the cellular and molecular effects of five different AED on human osteoclastogenesis and osteblastogenesis. It was observed that the different drugs had the ability to differentially modulate both processes, in a way dependent on the identity and dose of the AED. Shortly, valproic acid stimulated either osteoclastogenesis and osteoblastogenesis, whereas carbamazepine, gabapentin, and lamotrigine revealed an opposite behavior; topiramate elicited a decrease of osteoclast development and an increase in osteoblast differentiation. This is the first report describing the direct effects of different AED on human primary bone cells, which is a very important issue, because these drugs are usually consumed in long-term therapeutics, with acknowledged in vivo effects in bone tissue.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号