首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7231篇
  免费   458篇
  国内免费   1篇
  2023年   71篇
  2022年   102篇
  2021年   212篇
  2020年   133篇
  2019年   172篇
  2018年   220篇
  2017年   187篇
  2016年   279篇
  2015年   400篇
  2014年   459篇
  2013年   495篇
  2012年   635篇
  2011年   613篇
  2010年   387篇
  2009年   299篇
  2008年   386篇
  2007年   424篇
  2006年   394篇
  2005年   308篇
  2004年   297篇
  2003年   254篇
  2002年   260篇
  2001年   71篇
  2000年   44篇
  1999年   42篇
  1998年   57篇
  1997年   44篇
  1996年   50篇
  1995年   37篇
  1994年   29篇
  1993年   28篇
  1992年   31篇
  1991年   23篇
  1990年   19篇
  1989年   22篇
  1988年   19篇
  1987年   10篇
  1986年   12篇
  1985年   17篇
  1984年   12篇
  1983年   15篇
  1982年   15篇
  1981年   7篇
  1979年   13篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   9篇
排序方式: 共有7690条查询结果,搜索用时 15 毫秒
91.
Fruit distribution among individuals in populations of three orchid species was analyzed. Fruit set was low in the three species. The distribution of fruits in the non-autogamous species was skewed to the right, with high variance: mean ratios, and a moderate to high proportion of fruitless plants. Larger inflorescence size did not necessarily result in an increase in percent fruit set but tended to increase the probability to produce at least one fruit. Pollinator-mediated selection on inflorescence size through fruit production may be limited by the low overall level of visitation and the resulting uncertainty of pollination at the individual level.  相似文献   
92.
The excitatory action of kainic and glutamic acids in chick whole retina was demonstrated as an immediate stimulation of the release of labeled gamma-aminobutyric acid (GABA) and glycine in a superfusion system. This stimulatory effect was 3-10 times greater than that produced by a depolarizing K+ concentration; in addition, it was independent of Ca2+ in the medium, but notably inhibited when Na+ was omitted from the medium. Under identical experimental conditions, neither kainic nor glutamic acid had any effect on the release of labeled dopamine or alpha-aminoisobutyric acid, thus indicating that their effect is not unspecific or due to cell damage. Similar although less marked stimulation of labeled GABA and glycine release by kainic acid was obtained in subcellular retinal fractions, particularly in fraction P1, which contained photoreceptor terminals and outer segments. This stimulation was also Ca2+ independent and greatly reduced when Na+ was omitted from the medium. It is suggested that the stimulation of GABA release by kainic and glutamic acids is probably due to a Na+-dependent, carrier-mediated mechanism that responds to the entry of Na+ produced by the interaction of glutamic and kainic acids with retinal membranes. In cortical or striatal slices from mouse brain, these acids had a negligible stimulatory effect on GABA and dopamine release.  相似文献   
93.
Outward sodium and potassium cotransport in human red cells   总被引:7,自引:0,他引:7  
Summary This paper reports some kinetic properties of Na–K cotransport in human red cells. All fluxes were measured in the presence of 10–4 M ouabain. We measured Na and K efflux from cells loaded by the PCMBS method to contain different concentrations of these ions into a medium that contained neither Na nor K (MgCl2-sucrose substitution) in the absence and presence of furosemide. Furosemide inhibited 30–60% of the total efflux depending on the internal ion concentration and the individual subject. We took the furosemide-sensitive fluxes to be a measure of Na–K cotransport. The ratio of Na to K cotransport was 1 over the entire range of internal Na and K concentrations studied. When Na was substituted for K as the only internal cation, cotransport was maximally activated when the Na and K concentrations were between 20 and 90 mmol/liter cells. The concentration of internal Na required to produce half-maximal cotransport was about 13±4 mmol/liter cells (n=4), while the comparable concentration of K was somewhat lower. The activation curve was definitely sigmoid in character, suggesting that at least two Na ions are involved in the transport process. The maximum of Na–K cotransport was about 0.5±0.15 mmol/liter cells × hr (n=5); it had a flat maximum in the medium at about pH 7.0, decreasing in both the acid and alkaline sides. furosemide-resistant effluxes were found to be linear functions of internal Na and K concentrations and to yield rate coefficients of 0.019±0.002 hr–1 and 0.014±0.002 hr–1 (n=7), respectively. These values are of the same order of magnitude expected of ions moving across phospholipid bilayers.Charge de Recherches CNRS.  相似文献   
94.
In an attempt to determine if alterations in intraneuronal Ca2+ may regulate tyrosine hydroxylase activity, brain slices were subjected to experimental manipulations known to increase the intraneuronal concentration of free Ca2+ ions. Incubation of either striatal or olfactory tubercle slices in a Na+-free medium for 15 min at 37 degrees resulted in a marked increase in the activity of tyrosine hydroxylase present in the 20,000 g supernatant fraction of homogenates prepared from the slices. Tyrosine hydroxylase isolated from slices previously incubated in a Na+-free, choline-enriched medium or in a Na+-free, sucrose-enriched medium exhibited maximal activities when assayed at pH 6.0 and 7.0, respectively. However, the percentage stimulation of enzyme activity induced by incubation of the slices in a Na+-free medium was maximal when the enzyme assays were performed at pH 7.0. The observed increase in enzyme activity seems to be mediated by a decrease in the apparent Km of the enzyme for pteridine cofactor, regardless of whether the kinetic enzyme analyses were conducted at pH 6.0 or 7.0, and by an increase in the Ki of the enzyme for end-product inhibitor dopamine. The apparent kinetic changes in the enzyme do not seem to result from alterations in the endogenous dopamine content of the slices, and they are independent of any increase in dopamine release that might have occurred as a response to the augmented intraneuronal Ca2+ concentration. Furthermore, the activation of tyrosine hydroxylase produced by incubating slices in a Na+-free medium is observed even in slices depleted of dopamine by pretreatment of rats with reserpine 90 min before preparation of brain slices. The activation of tyrosine hydroxylase observed under these experimental conditions does not seem to be mediated by cAMP or by a cAMP-dependent phosphorylation process. It is suggested that the changes in tyrosine hydroxylase reported are mediated primarily by a rise in the free Ca2+ concentration within the nerve tissue. These observations are consistent with the hypothesis that the kinetic activation of tyrosine hydroxylase produced after depolarization of central dopaminergic neurons may occur through a Ca2+-dependent even other than transmitter release.  相似文献   
95.
96.
Some properties of glutamate decarboxylase (EC 4.1.1.15) activity in brain of newborn and adult mouse were studied comparatively. It was found that glutamate decarboxylase of the newborn brain was strongly inactivated by homogenization in hypotonic medium, centrifugation of isotonic sucrose homogenates, preincubation at 37°C or the addition of Triton-X-100, whereas the adult brain enzyme was practically unaffected by any of these conditions. It was also found that the newborn glutamate decarboxylase was less activated by pyridoxal 5′-phosphate and less inhibited by pyridoxal 5′-phosphate oxime-O-acetic acid, than the adult enzyme. These differences do not exist for brain dihydroxyphenylalanine decarboxylase (EC 4.1.1.26) and are not due to the release of inhibitors from the newborn brain. On the basis of the results obtained it is postulated that two forms of glutamate decarboxylase exist in brain: a newborn form, which is unstable and has high affinity for pyridoxal 5′-phosphate, and an adult form, which is much more stable and has low affinity for pyridoxal 5′-phosphate. The possible implications of these findings in the establishment of the σ-aminobutyric acid dependent synaptic inhibitory mechanisms during development are discussed.  相似文献   
97.
The development of a xylose-fermentingSaccharomyces cerevisiae yeast would be of great benefit to the bioethanol industry. The conversion of xylose to ethanol involves a cascade of enzymatic reactions and processes. Xylose (aldose) reductases catalyse the conversion of xylose to xylitol. The aim of this study was to clone, characterise and express a cDNA copy of a novel aldose reductase (NCAR-X) from the filamentous fungusNeurospora crassa inS. cerevisiae. NCAR-X harbours an open reading frame (ORF) of 900 nucleotides. This ORF encodes a protein (NCAR-X, assigned NCBI protein accession ID: XP_956921) consisting of 300 amino acids, with a predicted molecular weight of 34 kDa. TheNCAR-X-encoded aldose reductase showed significant homology to the xylose reductases ofCandida tenuis andPichia stipitis. WhenNCAR-X was expressed under the control of phosphoglycerate kinase I gene (PGK1) regulatory sequences inS. cerevisiae, its expression resulted in the production of biologically active xylose reductase. Small-scale oxygen-limited xylose fermentation with theNCAR-X containingS. cerevisiae strains resulted in the production of less xylitol and at least 15% more ethanol than the strains transformed with theP. stipitis xylose reductase gene (PsXYL1). TheNCAR-X-encoded enzyme produced byS. cerevisiae was NADPH-dependent and no activity was observed in the presence of NADH. The co-expression of theNCAR-X andPsXYL1 gene constructs inS. cerevisiae constituted an important part of an extensive research program aimed at the development of xylolytic yeast strains capable of producing ethanol from plant biomass.  相似文献   
98.
Structural and ecophysiological adaptations to forest gaps   总被引:2,自引:0,他引:2  
To survive new microclimatic conditions of a forest gap environment, plant species must physiologically and structurally adjust. A morpho-anatomical, ultrastructural and ecophysiological study was performed at three different times in a forest gap that was created by illegal selective logging. The study followed the early successional Actinostemon verticillatus and the late-successional Metrodorea brevifolia, to elucidate the adaptive strategies of acclimation to gaps. Additionally, Schinus terebinthifolius was included in the study in order to test the plasticity of a pioneer species that grows on forest edges, where this species had higher values of leaf thickness, leaf mass area and succulence. M. brevifolia had succulent leaves, high leaf area and a thin cuticle. A. verticillatus presented the densest leaves and was the only species to show leaf morpho-anatomical plasticity. Ultrastructural and physiological differences were observed only in A. verticillatus and M. brevifolia leaves from the gap: increase in the stroma volume, oil droplets, plastoglobuli, photochemical and non-photochemical quenching. Photosynthetic efficiency showed that the early stages of gap formation are the most critical. Acclimation strategies of A. verticillatus suggest this species invests in the efficiency of photosynthesis by increasing its leaf thickness, leaf mass area and in water content maintenance by increasing the density of its leaves, at the expense of gas exchange, was compensated by a high density of stomata. M. brevifolia compensates for the higher cost of leaves and lower leaf plasticity with ultrastructural changes that are used to adjust the photosynthetic process, which promotes a shorter leaf payback time.  相似文献   
99.
100.
The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5-HT4 receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5-HT4 receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5-HT4 receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5–10 mg/kg. In a similar way, we found a significant lower response to zacopride-stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post-synaptic 5-HT4 receptor activity in hippocampus-measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5-HT4 receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号