首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6030篇
  免费   352篇
  国内免费   1篇
  6383篇
  2023年   62篇
  2022年   85篇
  2021年   163篇
  2020年   112篇
  2019年   140篇
  2018年   187篇
  2017年   146篇
  2016年   228篇
  2015年   325篇
  2014年   374篇
  2013年   412篇
  2012年   521篇
  2011年   522篇
  2010年   317篇
  2009年   236篇
  2008年   326篇
  2007年   354篇
  2006年   344篇
  2005年   258篇
  2004年   253篇
  2003年   214篇
  2002年   211篇
  2001年   51篇
  2000年   35篇
  1999年   33篇
  1998年   50篇
  1997年   39篇
  1996年   44篇
  1995年   32篇
  1994年   28篇
  1993年   24篇
  1992年   28篇
  1991年   18篇
  1990年   16篇
  1989年   20篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   14篇
  1984年   7篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
排序方式: 共有6383条查询结果,搜索用时 15 毫秒
91.
92.
Native to propionibacteria, the Wood–Werkman cycle enables propionate production via succinate decarboxylation. Current limitations in engineering propionibacteria strains have redirected attention toward the heterologous production in model organisms. Here, we report the functional expression of the Wood–Werkman cycle in Escherichia coli to enable propionate and 1-propanol production. The initial proof-of-concept attempt showed that the cycle can be used for production. However, production levels were low (0.17 mM). In silico optimization of the expression system by operon rearrangement and ribosomal-binding site tuning improved performance by fivefold. Adaptive laboratory evolution further improved performance redirecting almost 30% of total carbon through the Wood–Werkman cycle, achieving propionate and propanol titers of 9 and 5 mM, respectively. Rational engineering to reduce the generation of byproducts showed that lactate (∆ldhA) and formate (∆pflB) knockout strains exhibit an improved propionate and 1-propanol production, while the ethanol (∆adhE) knockout strain only showed improved propionate production.  相似文献   
93.
Polymorphisms of butyrylcholinesterase (BChE) have been reported to be associated to weight, BMI variance and hypertriglyceridemia in adults and adolescents. The aim of the present study was to investigate the association of −116A (SNP: G/A; rs1126680) and 1914G (SNP: A/G; rs3495) variants of BCHE gene with anthropometric and biochemical variables associated with obesity in population sample of 115 individuals, from Southern Brazil. Participants were grouped in two categories: obese (BMI ≥ 30) and non-obese (BMI < 30). The 1914G allele showed significantly higher frequency in the obese group, and carriers of 1914G allele showed lower mean BChE activity when compared to 1914A carriers (p = 0.006). Higher means of BMI (p = 0.02) and triglyceride (TG; p = 0.01) were found in 1914G carriers (BMI = 27.57kg/m2; TG = 150.8 mg/dL) when compared to 1914A homozygotes (BMI = 25.55 kg/m2; TG = 107.9 mg/dL). Carriers of the −116A allele showed lower mean BChE activity than usual homozygotes, and the −116A variant was found in cis with 1914G (p < 0.0001; D′ = 1). The region of BCHE gene that contains the 1914G mutation site is target of microRNAs (miRs) and the response of BChE to glucocorticoids is especially influenced by these miRs. Therefore, it is possible that the 1914G allele can be interfering in gluconeogenesis, hyperglycemia, lipolysis and body fat distribution. This lower activity may cause an imbalance in lipid metabolism, which may lead to an increased predisposition to obesity and to a lower ability to maintain metabolic homeostasis.  相似文献   
94.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   
95.
This study examines fossil microorganisms found in iron-rich deposits in an extreme acidic environment, the Tinto River in SW Spain. Both electron microscopy (SEM and TEM) and non-destructive in situ microanalytical techniques (EDS, EMP and XPS) were used to determine the role of permineralization and encrustation in preserving microorganisms forming biofilms in the sediments. Unicellular algae were preserved by silica permineralization of their cell walls. Bacterial biofilms were preserved as molds by epicellular deposition of schwertmannite around them. In the case of fungi and filamentous algae, we observed permineralization of cell structures by schwertmannite in the sediments. The extracellular polymeric matrix around the cells was also preserved through permineralization of the fibrillar component. The process of permineralization and deposition of iron-rich precipitates present in the acidic waters of Rio Tinto served to preserve many microfossils in an oxidizing environment, in which organic compounds would not normally be expected to persist. Studies of microbial fossil formation mechanisms in modern extreme environments should focus on defining criteria to identify inorganic traces of microbial life in past environments on Earth or other planets.  相似文献   
96.
97.
Tropomodulin (Tmod) is an actin-capping protein that binds to the two tropomyosins (TM) at the pointed end of the actin filament to prevent further actin polymerization and depolymerization. Therefore, understanding the role of Tmod is very important when studying actin filament dependent processes such as muscle contraction and intracellular transport. The capping ability of Tmod is highly influenced by TM and is 1000-fold greater in the presence of TM. There are four Tmod isoforms (Tmod1–4), three of which, Tmod1, Tmod3, and Tmod4, are expressed in skeletal muscles. The affinity of Tmod1 to skeletal striated TM (stTM) is higher than that of Tmod3 and Tmod4 to stTM. In this study, we tested mutations in the TM-binding sites of Tmod1, using circular dichroism (CD) and prediction analysis (PONDR). The mutations R11K, D12N, and Q144K were chosen because they decreased the affinity of Tmod1 to stTM, making it similar to that of affinity of Tmod3 and Tmod4 to stTM. Significant reduction of inhibition of actin pointed-end polymerization in the presence of stTM was shown for Tmod1 (R11K/D12N/Q144K) as compared with WT Tmod1. When GFP-Tmod1 and mutants were expressed in primary chicken skeletal myocytes, decreased assembly of Tmod1 mutants was revealed. This indicates a direct correlation between TM-binding and the actin-capping abilities of Tmod. Our data confirmed the hypothesis that assembly of Tmod at the pointed-end of the actin filament depends on its TM-binding affinity.  相似文献   
98.
One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist.  相似文献   
99.
Cell membranes are the primary sites of cryopreservation injury and measuring changes to membrane composition arising from cold acclimation may assist with providing a rationale for optimising cryopreservation methods. Shoot tips from two south-west Western Australian species, Grevillea scapigera and Loxocarya cinerea, and Arabidopsis thaliana (reference species) were subjected to cryopreservation using the droplet vitrification protocol. Two pre-conditioning regimes involving a constant temperature (23 °C, CT with a 12 h light/dark cycle) or an alternating temperature (AT) regime (20/10 °C with a 12 h light/dark cycle) were compared. Soluble sugars, sterols and phospholipids present in the shoot tips were analysed. Use of AT pre-conditioning (acclimation) resulted in a modest decrease in cryotolerance in A. thaliana, increased cryotolerance in G. scapigera, and increased survival in the non-frozen control explants of L. cinerea in comparison to CT pre-conditioning. Increased cryotolerance was accompanied by a higher total sugar sterol and phospholipid content, as well as an increase in strong hydrating phospholipid classes such as phosphatidylcholine. The double bond index of bound fatty acyl chains of phospholipids was greater after AT pre-conditioning, mostly due to a higher amount of monoenes in A. thaliana and trienes in G. scapigera and L. cinerea. These findings suggest that AT pre-conditioning treatments for in vitro plants can have a positive influence on cryotolerance for some plant species and this may be related to observed changes in the overall composition of cell membranes. However, alternative factors (e.g. oxidative stress) may be equally important with other species (e.g. L. cinerea).  相似文献   
100.
Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号