首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6072篇
  免费   354篇
  国内免费   1篇
  6427篇
  2023年   62篇
  2022年   85篇
  2021年   163篇
  2020年   112篇
  2019年   140篇
  2018年   187篇
  2017年   147篇
  2016年   228篇
  2015年   328篇
  2014年   374篇
  2013年   414篇
  2012年   523篇
  2011年   524篇
  2010年   322篇
  2009年   242篇
  2008年   329篇
  2007年   356篇
  2006年   348篇
  2005年   259篇
  2004年   254篇
  2003年   215篇
  2002年   211篇
  2001年   52篇
  2000年   35篇
  1999年   33篇
  1998年   53篇
  1997年   40篇
  1996年   45篇
  1995年   32篇
  1994年   28篇
  1993年   24篇
  1992年   28篇
  1991年   18篇
  1990年   16篇
  1989年   21篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   14篇
  1984年   7篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1979年   12篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
排序方式: 共有6427条查询结果,搜索用时 15 毫秒
31.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with potassium cyanate leads to the formation of an active carbamylated enzyme that has lost the cooperative interactions among AMP sites, but retains sensitivity to inhibition of catalytic activity by the regulator AMP. Incorporation data on [14C]KNCO indicate that the loss of enzyme cooperativity at the AMP sites is related to selective carbamylation of four lysine residues per mole of tetrameric enzyme. Exhaustive carbamylation suggests that a second lysine residue per subunit is essential for AMP inhibition.  相似文献   
32.
Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.  相似文献   
33.
34.
35.
During the mass settlement events of brachyuran crabs, there is a significant chance of density-dependent injury in the megalopae (last larval stage) because cannibalism can occur by larger conspecifics. Laboratory observations revealed that the appendages that are more prone to injury are eyestalks, as well as first (P1) and fifth (P5) pereiopods. The ability of Carcinus maenas megalopae to autotomize these structures and the effect of such injuries in their feeding ability and metamorphosis were investigated. All tested specimens were able to autotomize one or both of their P1 and P5, but not their eyestalks. Megalopae missing a single P1, as well as one or both P5, were able to capture and ingest prey, as well as intact specimens. Megalopae with either P1 and P5 appendages or at least one damaged eyestalk failed to ingest sufficient food to reach the nutritional threshold required to successfully metamorphose.  相似文献   
36.
37.
In biological processes, the balance between positive and negative inputs is critical for an effective physiological response and to prevent disease. A case in point is the germinal center (GC) reaction, wherein high mutational and proliferation rates are accompanied by an obligatory suppression of the DNA repair machinery. Understandably, when the GC reaction goes awry, loss of immune cells or lymphoid cancer ensues. Here, we detail the functional interactions that make microRNA 155 (miR-155) a key part of this process. Upon antigen exposure, miR-155−/− mature B cells displayed significantly higher double-strand DNA break (DSB) accumulation and p53 activation than their miR-155+/+ counterparts. Using B cell-specific knockdown strategies, we confirmed the role of the miR-155 target Aicda (activation-induced cytidine deaminase) in this process and, in combination with a gain-of-function model, unveiled a previously unappreciated role for Socs1 in directly modulating p53 activity and the DNA damage response in B lymphocytes. Thus, miR-155 controls the outcome of the GC reaction by modulating its initiation (Aicda) and termination (Socs1/p53 response), suggesting a mechanism to explain the quantitative defect in germinal center B cells found in mice lacking or overexpressing this miRNA.  相似文献   
38.
Exercise training has been used for treatment/prevention of many cardiovascular diseases, but the mechanisms need to be clarified. Thus, our aim was to compare oxidative stress parameters between rats submitted to a swimming training and sedentary rats (control). Twelve male rats were divided into two groups: control and exercise training. The exercise training had daily 1 h swimming sessions for 8 weeks and a load (5% of its body mass) was placed in rat's tail. Thereafter the animals were killed, aorta and heart were surgically removed and blood was collected. Body mass gain, thiobarbituric acid reactive species (TBARS), carbonyl content, total reactive antioxidant potential (TRAP), total antioxidant reactivity (TAR), superoxide dismutase (SOD) activity and catalase (CAT) activity were evaluted. The trained rats showed a lower body mass gain and no modifications on heart. An increased SOD activity was observed on aorta after the training, but no changes were seen for CAT activity, which led to an increased SOD/CAT ratio. The arterial TBARS was also increased for trained rats. The decrease in TRAP in exercise training was the single modification on plasma. Our findings suggest that the increased SOD activity could play a role in vascular adaptations to exercise training. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
39.
Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases.  相似文献   
40.
We report the aerobic biodegradation of Microcystin-RR (MC-RR) by a bacterial strain isolated from San Roque reservoir (Córdoba – Argentina). This bacterium was identified as Sphingomonas sp. (CBA4) on the basis of 16S rDNA sequencing. The isolated strain was capable of degrading completely MC-RR (200 μg l−1) within 36 h. We have found evidence that MC-RR biodegradation pathway by this Sphingomonas sp. strain would start by demethylating MC-RR, affording an intermediate product, which is finally biodegraded by this strain within 72 h. Our results confirm that certain environmental bacteria, living in the same habitat as toxic cyanobacteria, have the capability to perform complete biodegradation of MC, leading to natural bioremediation of waterbodies. The bacterium reported here presents genetic homologies with other strains that degrade MC-LR. However, initial demethylation of MC-RR has been not described previously, raising questions on the probable presence of different biodegradation pathways for different MC variants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号