首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   24篇
  354篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   14篇
  2014年   13篇
  2013年   12篇
  2012年   18篇
  2011年   11篇
  2010年   9篇
  2009年   12篇
  2008年   10篇
  2007年   21篇
  2006年   17篇
  2005年   10篇
  2004年   10篇
  2003年   14篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   3篇
  1992年   5篇
  1991年   8篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1982年   5篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1974年   7篇
  1973年   3篇
  1972年   8篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   3篇
  1944年   1篇
排序方式: 共有354条查询结果,搜索用时 15 毫秒
41.
42.
If the conformational transition involved in enzyme memory occurs in several elementary steps, the time constant of the overall 'slow' relaxation is mostly determined by the individual values of the rate constants pertaining to the overall transconformation. The extent of kinetic co-operativity of the enzyme reaction, however, is mostly controlled by the degree of reversibility of the elementary steps of the conformational transition. There is then no simple relation between the time scale of the 'slow' transition and the extent of kinetic co-operativity of the enzyme reaction. A slow transition of about 10(-3) s-1 is therefore perfectly compatible with a strong positive or negative co-operativity and in particular with the negative co-operativity observed with wheat germ hexokinase LI. The relationship that has been established recently [Pettersson, G. (1986) Eur. J. Biochem. 154, 167-170] between the 'slow' enzyme relaxation and the extent of kinetic co-operativity holds only in the specific case where the transconformation occurs in one step. Owing to the possible occurrence of a multistep conformation change, the lack of this relationship means nothing as to the validity, or the invalidity, of the concept of mnemonical transition. More informative than the time scale of the 'slow' transition is its dependence with respect to glucose and glucose 6-phosphate, which both react with the enzyme. The effect of reaction products on the modulation of kinetic co-operativity is also of cardinal importance in the diagnosis of enzyme memory. Since an alternative model has been recently proposed by Pettersson (cited above) to explain the mechanistic origin of kinetic co-operativity of monomeric enzymes, the effect of products on the kinetic co-operativity predicted by this alternative model has been studied theoretically, in order to determine whether it is consistent with the experimental results obtained with wheat germ hexokinase LI. This analysis shows that the predictions of this model are in total disagreement with both the predictions of the mnemonical model and the experimental results obtained with wheat germ hexokinase LI, as well as with other enzymes. This alternative model cannot therefore be considered as a sensible explanation of the mechanistic origin of co-operativity of monomeric enzymes. It is therefore concluded that the mnemonical model which rests on numerous experimental results, obtained by different research groups, on different enzymes is the simplest and most likely explanation of the kinetic subtleties displayed by some monomeric enzymes, and in particular wheat germ hexokinase LI.  相似文献   
43.
44.
45.
46.
Gánti's chemoton model (Gánti, T., 2002. On the early evolution of biological periodicity. Cell. Biol. Int. 26, 729) is considered as an iconic example of a minimal protocell including three key subsystems: membrane, metabolism and information. The three subsystems are connected through stoichiometrical coupling which ensures the existence of a replication cycle for the chemoton. Our detailed exploration of a version of this model indicates that it displays a wide range of complex dynamics, from regularity to chaos. Here, we report the presence of a very rich set of dynamical patterns potentially displayed by a protocell as described by this implementation of a chemoton-like model. The implications for early cellular evolution and synthesis of artificial cells are discussed.  相似文献   
47.
48.
49.
The effects of inorganic mercury (HgII) and methylmercury (MeHg) on the colonization of artificial substrates by periphytic diatoms were studied using indoor freshwater microcosms. These consisted of a mixed biotope– water column + natural sediment – with rooted macrophyte cuttings (Elodea densa) and benthic bivalve molluscs (Corbicula fluminea).The periphyton was collected on glass slides in the water column after 34and 71 days. The two Hg sources were introduced either by daily additions to the water column, or once at the beginning into the sediment, using two nominal concentrations: water column, 0.5 μgL-1 and 2 μg L-1 for both compounds: sediment, 0.5 mg kg-1 (fw) and 2 mgkg-1 (fw) for MeHg and 1 mg kg-1 (fw) and 10 mgkg-1 (fw) for HgII. Several complementary criteria were used to analyse the structural and functional perturbations induced: cell density, species richness, diatom size, relative abundance. Exposure to MeHg added to the water column resulted in reduced cell density and changes in species composition with enhancement of e.g. Fallacia pygmaea or Nitzschia palea; inorganic Hg had less effect on the population structure. After contamination via the sediment, the effects of the two compounds were less pronounced than for the water source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号