首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   25篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   14篇
  2012年   18篇
  2011年   13篇
  2010年   10篇
  2009年   13篇
  2008年   10篇
  2007年   22篇
  2006年   15篇
  2005年   9篇
  2004年   12篇
  2003年   14篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   4篇
  1992年   5篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1982年   5篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1974年   7篇
  1973年   3篇
  1972年   8篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   3篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
41.
Epistasis refers to the nonadditive interactions between genes in determining phenotypes. Considerable efforts have shown that, even for a given organism, epistasis may vary both in intensity and sign. Recent comparative studies supported that the overall sign of epistasis switches from positive to negative as the complexity of an organism increases, and it has been hypothesized that this change shall be a consequence of the underlying gene network properties. Why should this be the case? What characteristics of genetic networks determine the sign of epistasis? Here we show, by evolving genetic networks that differ in their complexity and robustness against perturbations but that perform the same tasks, that robustness increased with complexity and that epistasis was positive for small nonrobust networks but negative for large robust ones. Our results indicate that robustness and negative epistasis emerge as a consequence of the existence of redundant elements in regulatory structures of genetic networks and that the correlation between complexity and epistasis is a byproduct of such redundancy, allowing for the decoupling of epistasis from the underlying network complexity.  相似文献   
42.
We analyzed relationships of hepatic and pancreatic biomarkers with the cholestatic syndrome and tumor stage in exocrine pancreatic cancer (N = 183). Information on laboratory tests and on signs and symptoms was obtained from medical records and patient interviews. Bilirubin, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT) and alkaline phosphatase were lower in tumor stage IV. The association was due to the relationship between cholestatic syndrome and earlier presentation of patients. There was no association between hepatic biomarkers and stage when adjusting by cholestatic syndrome. Relationships of hepatic and pancreatic biomarkers with pancreatic symptoms and tumor stage must be controlled in "-omics" and other studies using biomarkers.  相似文献   
43.
ATP-sensitive K(+) (K(ATP)) channels modulate their activity as a function of inhibitory ATP and stimulatory Mg-nucleotides. They are constituted by two proteins: a pore-forming K(+) channel subunit (Kir6.1, Kir6.2) and a regulatory sulfonylurea receptor (SUR) subunit, an ATP-binding cassette (ABC) transporter that confers MgADP stimulation to the channel. Channel regulation by MgADP is dependent on nucleotide interaction with the cytoplasmic nucleotide binding folds (NBF1 and NBF2) of the SUR subunit. Crystal structures of bacterial ABC proteins indicate that NBFs form as dimers, suggesting that NBF1-NBF2 heterodimers may form in SUR and other eukaryotic ABC proteins. We have modeled SUR1 NBF1 and NBF2 as a heterodimer, and tested the validity of the predicted dimer interface by systematic mutagenesis. Engineered cysteine mutations in this region have significant effects, both positive and negative, on MgADP stimulation of K(ATP) channels in excised patches and on macroscopic channel activity in intact cells. Additionally, the mutations cluster in the model structure according to their functional effect, such that patterns of alteration emerge. Of note, three gain-of-function mutations, leading to MgADP hyperstimulation of the channel, are located in the D-loop region at the center of the predicted dimer interface. Overall, the data support the idea that SUR1 NBFs assemble as heterodimers and that this interaction is functionally critical.  相似文献   
44.
45.
46.
47.
48.
If the conformational transition involved in enzyme memory occurs in several elementary steps, the time constant of the overall 'slow' relaxation is mostly determined by the individual values of the rate constants pertaining to the overall transconformation. The extent of kinetic co-operativity of the enzyme reaction, however, is mostly controlled by the degree of reversibility of the elementary steps of the conformational transition. There is then no simple relation between the time scale of the 'slow' transition and the extent of kinetic co-operativity of the enzyme reaction. A slow transition of about 10(-3) s-1 is therefore perfectly compatible with a strong positive or negative co-operativity and in particular with the negative co-operativity observed with wheat germ hexokinase LI. The relationship that has been established recently [Pettersson, G. (1986) Eur. J. Biochem. 154, 167-170] between the 'slow' enzyme relaxation and the extent of kinetic co-operativity holds only in the specific case where the transconformation occurs in one step. Owing to the possible occurrence of a multistep conformation change, the lack of this relationship means nothing as to the validity, or the invalidity, of the concept of mnemonical transition. More informative than the time scale of the 'slow' transition is its dependence with respect to glucose and glucose 6-phosphate, which both react with the enzyme. The effect of reaction products on the modulation of kinetic co-operativity is also of cardinal importance in the diagnosis of enzyme memory. Since an alternative model has been recently proposed by Pettersson (cited above) to explain the mechanistic origin of kinetic co-operativity of monomeric enzymes, the effect of products on the kinetic co-operativity predicted by this alternative model has been studied theoretically, in order to determine whether it is consistent with the experimental results obtained with wheat germ hexokinase LI. This analysis shows that the predictions of this model are in total disagreement with both the predictions of the mnemonical model and the experimental results obtained with wheat germ hexokinase LI, as well as with other enzymes. This alternative model cannot therefore be considered as a sensible explanation of the mechanistic origin of co-operativity of monomeric enzymes. It is therefore concluded that the mnemonical model which rests on numerous experimental results, obtained by different research groups, on different enzymes is the simplest and most likely explanation of the kinetic subtleties displayed by some monomeric enzymes, and in particular wheat germ hexokinase LI.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号